‘3\ Hr@mﬁlgﬂ ;

":___—-—___;-==_

Tips and Tricks

to develop software for CE product
on low-end hardware

L inuxCon Brasil
Sao Paulo 3

Gustavo Sverzut Barbiepi

about me

embedded systems

T SR - ~USION -
-1

- developer since 1991

- unicamp - computer engineering 2001-2005
- freevo - python media center 2003

- Indt - embedded software 2006-2008

- profusion embedded systems - since 2008

- efl, python, ffmpeg, mplayer, systemd...

a

= rmFU%l@M

2d systems

embedt

ce products

.mww
L P
2 f
141
s Bt s
_wmm
:ﬁm
1 iz 3
RIRT
i
s 31 11148
.m ﬁmp
IR
RIREiE]
TR

%\(ProFUSION

embedded systems ;
-

ce products

- consumer electronics
- high volume - every cent counts

- well defined purpose

- target audience

» = pr——. ._
consumer expectations - before T OrUSION
N

) ProrUSION

embedded systems

consumer expectation

E
-
J

- raises the bar
- ease of use hits mass market
- Ipod click wheel
. technical point-of-view: suboptimal
. commercial point-of-view: expensive
. users point-of-view: awesome! o

- Itunes - optimize and organize - EASY!

- music store: easy to get legal media

S

consumer expectations - U.

embedded systems

) ProrUSION -

- raises the bar, again
- Introduces (mass market):
. capacitive/glass touchscreen
. highly responsive operating system
. central application store and updates
. easy mobile internet o

- purpose not so well defined anymore

- Impacts EVERY market: cars, planes, refrigerators...

%\(SrorUSION

developers expectatio embedded sustems j

- the best software architecture
- the most beautiful code

- the best algorithm

- scalable (screens, cores, ...)

- modular

- reusable

embedded systems

graphical designer ex \ ProrUSION ;

- non-rectangular paths and shapes
- transparency, blur and other filters
- fluid animations

- ~~change design at any project stage~~

- ~~If lllustrator/flash does, ce does as well~~

’“ SroFUSION

expectations summar enocadeo sisens

- developers and users differ widely
- designers and users tend to converge

- ... developers shouldn't design a product

- ... but designers are unrealistic

i %\: ProFUSION

embedded systems ;
-

- developers: fast feels fast
- designers: make everything themable

- users: effects are nice per-se, (abJuse them

%\: ProFUSION

embedded systems ;
il

solutions

- general:
. always focus on the user
. define your target audience
. define the product purpose
- technical:
. be responsive
. never block
. allow cancellation

. avoid work

be responsive Pt

T SR - ~USION -
-1

- provide user feedback as quickly as possible
- ... graphics, sound, vibration

- good even if technically useless

- amiga: Coprocessors

- windows: high priority mouse interruption

- touchscreens with click sound

never block

il

- cooperative tasks (idlers)
- threads

- ProCesses

%‘\“ﬁ ProrUSION

never block - cooperati cmbeoged systems

- cooperative tasks that preempt themselves

- best option for easy-to-segment tasks

- needs predictable task duration

- needs no locking, no race conditions

- not multi-core friendly

- easy to cancel g

- Integrates fine into main loops

- easy to update user interface

T .

ProrUSION

embedded systems

never block - cooperati \

struct ctx {

:

unsigned int current, end, step;
double value;
double *input;

};

bool sum pow5>(struct ctx *ctx) {
unsigned int last = ctx->current + ctx->step;
if (last > ctx->end)
last = ctx—->end;

for (; ctx=->current < last; ctx->current++)

ctx->value += pow(ctx->inputlctx->currentl, 5);

->current < ctx->end;

R SSE S oFUSION -

embedded systems

never block - cooperati :

int main(int argc, char *argv[ll) {
// code...
while (run) {
do something();
if (needs_sum pow5) {
if (Isum pow5(ctx)) {
needs sum pow> = false;
printf("sum pow5=%f\n", ctx->value);

>
// code...

embedded systems

s R ™ -
never block - threads ¥ mrorusion

Z ,,‘_—_———-—

- task is preempted by kernel

- best option for hard-to-segment tasks

- good for unpredictable task duration

- good for blocking syscalls, hardware access

- may need locking, may have race conditions

- multi-core friendly -

- harder to cancel e

- harder to update user interface (qt, gtk, efl...)

never block - threads \

T

ProrUSION

embedded systems

B =

. |

struct ctx {
unsigned int count;
double *input;
enum { NEED, DOING, DONE, END } stage;
};
int cmp(const void *p1, const void *p2) {
double *a = p1, *b = p2;
return (int) (*a - *b);
b
void *th sort(void *data) {

struct ctx *ctx = data;

gsort(ctx—>input, ctx->count, sizeof(double), cmp);
ctx->stage = DONE;
return NULL;

™

never block - threads I - ProrUSION

. 1 |

int main(int argc, char *argv[l) {
// code...

while (run) {
do something();
if (ctx—->stage == NEED) {
ctx->stage = DOING;
pthread create(&th, NULL, th sort, ctx);
> else if (ctx—->stage == DONE) {

pthread join(&th);
ctx->stage = DID;

puts("thread sorted!");

}
// code...

never block - processe

;\ S Pror USION -
g

- similar to thread
- usually for heavy-weight long running

- good for problem-prone (NFS, uninterpretable)
- different memory space - killable

- more robust

- harder to communicate - ipc/shmem

- harder to update user interface

%\(SrorUSION

embedded systems ;
o

allow cancellation

- If possible stop the task
- otherwise ignore Its results

- rollback changes

- avoid partial work (leftovers)
- NEVER EVER pthread_cancell()

%\(ProFUSION -

embedded systems ;
-

avold work

- cache and pre-calculate
- offload (coprocessors or servers)

- optimizations (graphics)

%\(SrorUSION

avoid work - cache enocadeo sioens

- excellent for "pure” operations
- define allowed cache size (no leaks!)

- define invalidation policy (no stales!)

- optimize lookup (must be worth!)

%\(SrorUSION

avoid work - cache exa cmbeddes syetens j

- binary, validated and optimized files |

- native objects retrieved from database

- decoded images, sounds and fonts

’“ SroFUSION

avoid work - offload enocadeo sisens

- use hw acceleration (audio, video, graphics)
- delegate work to remote servers
. map routing

. voice recognition (siri)

. mall index and searching (gmail)

%\(ProFUSION -

avoid work - graphics cnbeooed sudems

- use specific painting operations

- do retained rendering

- employ occlusion

%\(ProFUSION

graphics - painting oper cnbEaged setems -;

- solid opaque fill

pixel color = color;

- Image blend with color and transparency

alpha2 = 255 - alpha1l;
pixel color = (sourcel * alphal) / 255 +
(((source2 * color) / 255) * alpha2) / 255;

- cost Is very different!
- prefer use RGB563 (16bpp) or YUV

- ProrUSION

embedded systems

painting steps:
1

R W TEXT
screen: _.-""

image | _.-1"

text

rectangle

The order of composition of
layers is important!

ProrUSION

embedded systems

graphics - retained ren

E
-
J

- objects are not rendered immediately
- state changes are remembered

- multiple changes != multiple rendering
- render phase will compute differences
- Just visible changes should be used

- allows greater optimizations g

- optimize how to know dirty regions

graphics -

=

occlusion

E—

1a i

 ProFUSION

T

.’-

embedded systems

1

the area
dirty areas ’ doesn’t need
‘ to be painted
. blue.
2a 2b : LE - ’

-
15
-
-
- 1
4
- f _
-
1 - !
o 1
-
»
-
R 1
b
-
1
1
1

*

Areas marked as dirty need to be painted (with
background) to clean the image. REMEMBER:
the ORDER MATTERS!

%\(SrorUSION

graphics - occlusion enocadeo sioens

- do not paint objects:
. outside the viewport
. under opaque regions

. obscured/forbidden regions

- optimize how to find out occlusions

’“ SroFUSION

general optimizations enocadeo sisens

- avoid memory allocations!
- avoid memory fragmentation
- replace copies with references

- USE proper data structures

- be cpu cache-line friendly

B)

ProrUSION -

embedded systems

S
efl - enlightenment foun més

B /r—-——

- focused on performance and low memory

- heavily optimized since 2001 (current set)
- most interesting libs:
. BIna - data types
. eet - binary data store and load
. evas - 2d drawing canvas .

. edje - themes, animations and layouts

. elemetary - widget set

%\(SrorUSION

embedded systems ;
o

conclusion

- always focus on the user

- define your target audience

- define the product purpose

- be responsive and never block

- do not just optimize, avoid working at all!

E\ ProrUSION :

embedded systems

questions?

Obrigado!

Gustavo Sverzut Barbier

<barbieri@profusion.mobi>

