
The Hello World GCC Front End

Gustavo Sverzut Barbieri Rafael Ávila de Esṕındola

GPSL - UNICAMP

27 de abril de 2006

1 Setup

2 The Dummy Program

3 Compiling and Testing

4 An Empty Main

5 Hello World

6 Compiler Driver

7 Adding an Option

8 Debug

9 Contact

Setup

IntroductionIntroduction

The Hello World front end is the smallest GCC front end:

$./ ghello test.hello -o hello

$./ hello

HelloWorld

Regardless of the contents of test.hello.
But still, it is too complex to be explained all at once.

Setup

StepsSteps

The front end will be constructed incrementally. At each step a
new functionality will be added:

1 A dummy program that links with the GCC middle and back
end.

2 A compiler that creates an empty main()

3 A compiler that creates a HelloWorld

4 A compiler driver to automate the assembling and linking

5 The -bye option that causes a GoodBye program to be
created

6 Debug options are added to the compiler

Setup

Installing a SnapshotInstalling a Snapshot

A snapshot of the necessary parts of the GCC source, the
sources used in the tutorial and and the resulting binaries are
available in http://tux05.ltc.ic.unicamp.br/~rafael/
snapshot.torrent

The GCC configure creates a Makefile with absolute path
names :-(

You must uncompress the snapshot into /tmp

$ cd /tmp

$ btdownloadcurses http :// tux05.ltc.ic.unicamp.br/~ rafael/snapshot.torrent

$ tar xjf snapshot -gcc.tar.bz2

$ cd /tmp/snapshot/

http://tux05.ltc.ic.unicamp.br/~rafael/snapshot.torrent
http://tux05.ltc.ic.unicamp.br/~rafael/snapshot.torrent

Setup

SnapshotSnapshot

Compiling GCC takes a long time. We don’t have that time
now.

Incremental compiles will be much faster

You should follow this presentation using full source code and
The gcc hello world front end HOWTO, located at
http://tux05.ltc.ic.unicamp.br/~rafael/gcc.pdf

http://tux05.ltc.ic.unicamp.br/~rafael/gcc.pdf

Setup

Directory TreeDirectory Tree

After extracting, you will have the following directories:

/tmp/snapshot/hello-world The sources of each step of this
tutorial

/tmp/snapshot/build The directory used to build GCC

/tmp/snapshot/trunk A striped down GCC source tree

/tmp/snapshot/trunk/gcc/hello-world Current front-end
code, Initially a copy of
/tmp/snapshot/hello/minimal

The Dummy Program

The Structure of a Front EndThe Structure of a Front End

Each front end lives in a subdirectory of gcc. The hello world
front end is in /tmp/snapshot/trunk/gcc/hello-world. In it
you will find

config-lang.in

Make-lang.in

hello1.c

lang.opt (empty)

lang-specs.h (empty)

The empty files exist only to avoid long recompiles after their
creation.

The Dummy Program

trunk/gcc/hello-world/config-lang.intrunk/gcc/hello-world/config-lang.in

This file is a shell script that should define the following variables:

language The language name. Will be the name of the main
target of Make-lang.in (hello-world)

compilers A list of compilers that will be created
(hello1\$(exeext))

gtfiles The source files that should be scanned for garbage
collector information
(\$(srcdir)/hello-world/hello1.c)

The Dummy Program

trunk/gcc/hello-world/Make-lang.intrunk/gcc/hello-world/Make-lang.in

This file is included in trunk/gcc/Makefile.in. Because of this,
all paths are relative to trunk/gcc. In this file you will find three
useful targets:

hello-world Main entry point

hello1$(exeext) Links the compiler (hello1)

hello-world/hello1.o Compiles hello1.c into hello1.o

The remaining targets are empty and exist only to make
trunk/gcc/Makefile.in happy.

The Dummy Program

trunk/gcc/hello-world/hello1.ctrunk/gcc/hello-world/hello1.c

This is the only source file. In it you will find:

5 empty data types definitions. They make the garbage
collector happy.

Many empty functions (insert_block(), . . .,
hello_type_for_mode()). They will be callbacks.

The initialization of the lang_hooks variable. It contains
pointers to the callbacks.

tree.def is included three times with a bit of macro magic.
This initializes some data structures that implement GCC’s
intermediate representation.

The garbage collector headers are included. These headers are
automatically generated.

Compiling and Testing

CompilingCompiling

The snapshot includes an initial build. Following this steps will
start a build from scratch. Don’t do it now!

1 configure must be run from a build dir that is distinct from
the source dir

2 to build the Hello World front end, add
--enable-languages=hello-world.

$ cd /tmp/snapshot/build/

$../ trunk/configure --enable -languages=hello -world

$ make

Compiling and Testing

TestingTesting

1 touch
/tmp/snapshot/trunk/gcc/hello-world/hello1.c

2 cd /tmp/snapshot/build/gcc

3 make hello1

4 Very little will be rebuilt

$./ hello1

Execution times (seconds)

TOTAL : 0.01 0.00 0.02

12 kB

Extra diagnostic checks enabled; compiler may run slowly.

Configure with --disable -checking to disable checks.

$

An Empty Main

This stepThis step

Compiler will always produce an assembly with an empty main
function

Commands:

$ cd /tmp/snapshot/build/gcc

$ cp /tmp/snapshot/hello -world/1-main/* \

/tmp/snapshot/trunk/gcc/hello -world

$ make hello1

Changed files:

hello1.c
Make-lang.in

An Empty Main

Basic APIBasic API

GCC provides the main() function. The front end must implement
some callbacks:

hello_expand_function

hello_init

hello_parse_file

To register a callback, change the definition of the corresponding
macro before initialising the lang hooks variable:

#undef LANG_HOOKS_INIT

#define LANG_HOOKS_INIT hello_init

const struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;

An Empty Main

Call GraphCall Graph

cgraph_finalize_function

hello_init

hello_parse_file

tree_rest_of_compilation

cgraph_optimize

hello_expand_function

cgraph_finalize_compilation_unit

An Empty Main

Intermediate RepresentationIntermediate Representation

GCC uses three different intermediate representations:

GENERIC A high level representation based on trees.

GIMPLE Uses GENERIC’s data structures, but is in static
single assignment form (SSA).

RTL Low level representation used by the target specific
part of the compiler (backend).

The front end uses GENERIC to transfer one function a time
to the middle end.

The middle end uses GIMPLE to optimize

The backend uses RTL to generate assembly code

An Empty Main

Function DeclarationFunction Declaration

Some facts about function declarations

In GENERIC, every use a function is represented with a
function declaration

Function declarations are build with build_fn_decl()

They contain a function name and a function type

The easiest way to build a function type is with
build_function_type_list()

In this tutorial we define the helper function
build_function_decl()

An Empty Main

FunctionFunction

The function body is also stored into the declaration:

The body itself in DECL_SAVED_TREE
The return in DECL_RESULT

In this tutorial we defined the helper function
build_function()

An Empty Main

Changes to hello1.cChanges to hello1.c

include tree-gimple.h (defines alloc_stmt_list())

Make getdecls() return NULL_TREE

hello_init()

build_common_tree_nodes() (char is signed?, size is
signed?)
build_common_tree_nodes2() (double == float)

hello_expand_function()

call tree_rest_of_compilation()

hello_parse_file() This function will pretend that it has
parsed the program

int main(void) {}

An Empty Main

hello parse filehello parse file

call build_function_type_list() to construct main()’s type

call build_function_decl() to declare main

build an empty block (the {}) and statement list

use build_function() to add the function body to the
declaration.

convert main() into GIMPLE with gimplify_function_tree()

send it to the middle end (cgraph_finalize_function())

finish (cgraph_finalize_compilation_unit() and
cgraph_optimize())

An Empty Main

Changes to Make-lang.inChanges to Make-lang.in

Have target hello1.o dependent on $(TREE GIMPLE H)

An Empty Main

RunningRunning

$ touch test.hello

$./ hello1 test.hello -o test.s

$ gcc test.s -o test

$./test

Hello World

This stepThis step

Compiler will produce a hello world program.

Commands:

$ cd /tmp/snapshot/build/gcc

$ cp /tmp/snapshot/hello -world/2-hello /* \

/tmp/snapshot/trunk/gcc/hello -world

$ make hello1

Changed file:

hello1.c

Hello World

New conceptsNew concepts

Our program will be the equivalent of:

int main() {

puts ("HelloWorld");

}

so we need:

Text strings: it will hold our “HelloWorld”.

Calling functions: we will call libC puts()

Hello World

Building StringsBuilding Strings

To compile a program that prints Hello World, we must first build
a string constant:

We will use a null (’\0’) terminated string to be able to use
libC puts()

GCC provides build_string()

Some front ends index from 0, others from 1. We must set
the type of the string constant!

To build an array type, pass the element type and an index
type to build_array_type()

build_index_type() is used to build an index type from 0 to
its argument.

In this front end, build_string_literal() builds the string,
sets the type, and returns a pointer to it.

Hello World

Calling FunctionsCalling Functions

We will call puts() to print "Hello World"

First, build a function prototype (analogous to main())

The arguments are represented with a list built with
tree_cons()

build_function_call_expr() builds a call statement

append_to_statement_list() adds the call to main()’s
statements

Hello World

Changes to trunk/gcc/hello-world/hello1.cChanges to trunk/gcc/hello-world/hello1.c

GCC calls hello_mark_addressable() to inform that
something had its address taken

There is nothing to be done about strings
For function declarations, set TREE_ADDRESSABLE
Nothing else has its address taken in this front end

add an external parameter to build_function_decl()

add build_string_literal()

make hello_parse_file() add an call to puts()

Hello World

RunningRunning

$ touch test.hello

$./ hello1 test.hello -o test.s

$ gcc test.s -o test

$./test

HelloWorld

Compiler Driver

This stepThis step

Compiler, assembler and linker will be driven by ghello

Commands:

$ cd /tmp/snapshot/build/gcc

$ cp /tmp/snapshot/hello -world/3-driver /* \

/tmp/snapshot/trunk/gcc/hello -world

$ make hello1

$ make ghello

Changed files:

Make-lang.in
lang-spec.h
spec.c

Compiler Driver

Creating trunk/gcc/hello-world/lang-spec.hCreating trunk/gcc/hello-world/lang-spec.h

We will now create the compiler driver. The file lang-spec.h
contains two table entries.

{".hello", "@hello", NULL , 0, 0}

A file ending with .hello should be handled according to the
@hello entry

{"@hello",

"hello1 %i %(cc1_options) "

"%(invoke_as)", NULL , 0, 0

}

call hello1 with the input file name (%i) and common
options (%(cc1 option))

call the assembler (%(invoke as))

Compiler Driver

Creating trunk/gcc/hello-world/spec.cCreating trunk/gcc/hello-world/spec.c

This file contains the language specific parts of the driver. It must
define:

lang specific driver() “main” function. May process, add, or
remove arguments to the compiler.

lang specific pre link() Called before linking (only used by
gcj)

lang specific extra outfiles Number of extra output files
generated by lang_specific_pre_link()

Compiler Driver

Changes to trunk/gcc/hello-world/Make-lang.inChanges to trunk/gcc/hello-world/Make-lang.in

Build the driver with the ghello$(exeext) target

Change the hello-world target to depend on it

Change the hello-world.install-common target to install
ghello

Compiler Driver

RunningRunning

The -B options informs ghello to search for hello1 in the
current directory

$./ ghello -B. test.hello -o test

$./test

HelloWorld

After it’s installed on system, you don’t need -B anymore!

Adding an Option

This stepThis step

Compiler will accept the option -bye to print “GoodBye”.

Commands:

$ cd /tmp/snapshot/build/gcc

$ cp /tmp/snapshot/hello -world/4-option /* \

/tmp/snapshot/trunk/gcc/hello -world

$ make hello1

$ make ghello

Compiling hello1 will take longer then usual

Changed files:

hello1.c
lang-spec.h
lang.opt

Adding an Option

Creating trunk/gcc/hello-world/lang.optCreating trunk/gcc/hello-world/lang.opt

GCC does the options parsing, but we need to declare options in
lang.opt file:

1 Language declaration

2 Option declarations. Each option is made of 3 lines followed
by an empty line:

1 Option (without the ’-’)
2 Languages that support the option
3 Literal description of the option

The constants CL <language> and OPT <option> will be defined.

Adding an Option

Changes to trunk/gcc/hello-world/hello1.cChanges to trunk/gcc/hello-world/hello1.c

Add a new callback:

unsigned int

hello_init_options (unsigned int argc ,

const char **argv)

{

return CL_Hello;

}

Redefine LANG_HOOKS_INIT_OPTIONS to use it.

Adding an Option

Changes to trunk/gcc/hello-world/hello1.cChanges to trunk/gcc/hello-world/hello1.c

Handle the option:

static int say_bye = 0;

static int

hello_handle_option (size_t scode ,

const char *arg ATTRIBUTE_UNUSED ,

int value ATTRIBUTE_UNUSED){

enum opt_code code = (enum opt_code) scode;

if (code == OPT_bye) {

say_bye = 1;

return 1;

}

return 0;

}

Use it:

const char *msg = say_bye ? "GoodBye" : "HelloWorld";

tree hello_str = build_string_literal (msg);

Adding an Option

Changes to trunk/gcc/hello-world/lang-spec.hChanges to trunk/gcc/hello-world/lang-spec.h

You must instruct the compiler driver to pass the option to the
compiler. Just add %{bye} to the @hello entry:

{"@hello",

"hello1 %i %{bye} %(cc1_options) "

"%(invoke_as)", NULL , 0, 0

}

Notice the braces “{“ and “}”!

Adding an Option

RunningRunning

As before:

$./ ghello -B. test.hello -o test

$./test

HelloWorld

With our new option:

$./ ghello -B. -bye test.hello -o test

$./test

GoodBye

Debug

This stepThis step

Compiler will produce tree dumps

Commands:

$ cd /tmp/snapshot/build/gcc

$ cp /tmp/snapshot/hello -world/5-debug /* \

/tmp/snapshot/trunk/gcc/hello -world

$ make hello1

Changed files:

hello1.c
Make-lang.in

Debug

How to debug GCCHow to debug GCC

Since almost everything in GCC is a tree and these structures are
quite huge, it may be difficult to debug, so there are two main
tools to help with this task:

Tree dumps: dump internal trees to files at various stages. This
require changes to source code that we will show.

Tree browser: browse tree interactively. This let you navigate to
children, print nodes, inspect attributes and much
more. This requires no changes to source since it can
be launched from GDB. Just call debug_tree() or
browse_tree() on tree node:

$ gdb ./ hello1

(gdb) b hello1.c:260

(gdb) r

(gdb) p debug_tree (main_fndecl)

(gdb) p browse_tree (main_fndecl)

Debug

Changes to trunk/gcc/hello-world/hello1.cChanges to trunk/gcc/hello-world/hello1.c

include tree-dump.h

call dump_function(TDI_original, main_fndecl) before
calling gimplify_function_tree()

call dump_function(TDI_generic, main_fndecl) after calling
gimplify_function_tree()

Debug

Changes to trunk/gcc/hello-world/Make-lang.inChanges to trunk/gcc/hello-world/Make-lang.in

Include $(TREE DUMP H) as dependency of target
hello-world/hello1.o

Debug

Debug exampleDebug example

$./ ghello -B. -fdump -tree -all test.hello -o test

$ cat test.hello.t02.original

main ()

{

puts ("HelloWorld");

}

This could also be used with other GCC ≥ 4 compilers!

Contact

ContactContact

Gustavo Sverzut Barbieri

Email: barbieri@gmail.com
Website: http://www.gustavobarbieri.com.br

ICQ: 17249123
MSN: barbieri@gmail.com

Jabber: gsbarbieri@jabber.org

Rafael Ávila de Esṕındola

Email: rafael.espindola@gmail.com
Jabber: rafael.espindola@jabber.org

mailto:barbieri@gmail.com
http://www.gustavobarbieri.com.br
mailto:rafael.espindola@gmail.com

	Setup
	The Dummy Program
	Compiling and Testing
	An Empty Main
	Hello World
	Compiler Driver
	Adding an Option
	Debug
	Contact

