
Canola – Application and Framework
diving into canola’s extensible rich gui framework

Maemo Summit, October 10th, 2009

Gustavo Sverzut Barbieri <barbieri@profusion.mobi>

agenda

- introduction and history

- canola’s general overview

- tutorial of a simple plugin

- canola’s future

- google summer of code results

introduction

history

- 1991: clipper text ui

- 1998: tcl/tk — internet!

- 1999: perl cgi-bin

- 2000: gtk, qt

- 2001: php — universtiy: infinite time + smart people around!

- 2002: freevo (pygame)

- 2003: turbogears, django, zope

- 2006: canola1 (sdl, gobject, c) — indt!

- 2007: canola2 (python-efl)

- 2009: memphis — profusion!

freevo

- first contact with python — after perl, gotta love it!

- first gui architecture

- heavy usage of xml to describe ui — ouch!

- lots ot time to play and experiement technologies

canola1

- excellent concept designed by marcelo (handful)

- joined the project late

- took over technical leadership

- unfortunately closed source and dead

canola1 pains

- low level graphics with sdl
- abusing c:

- object orientation
- introspection
- callbacks

- manual reference counting

canola1 was not just pain

- graphics looked great

- user experience was awesome

- people liked it — created a community even being closed!

- excellent model-view-controller (mvc) usage

- excellent mvc-based plugin system!

canola2 requirements

- even more animations — and thus callbacks!

- even more features — then code and so objects!

- 3rd party extensible — you may not be as careful!

- and do it all in 4 months... — more LoC = more time!

canola2 solutions

- python: just a high level language would do it

- evas: required a powerful and fast canvas
- edje: first overlooked, then our salvation
- helpers: atabake and canolad were based on canola1 — proved very useful

- model-view-controller: similar to canola1, but improved

- plugins: similar to canola1

canola processes

- atabake: plays media — and keeps licensing problems away

- downloadmanager: downloads stuff from internet, with resume support

- canola-thumbnailer: thumbnail generator

- canolad: maintains media database, monitors and scans media

- canola: graphical user interface

general gui overview

- canola itself is just a terra-plugin launcher

- given a model, returns a handler controller that loads a view
- similar to mime-types and their handlers

- special MainController acts like operating system kernel

- task: main entry point, like OS processes

- all in one process, so everything must be cooperative!
- tasks offload heavy or blocking operations to other processes

- avoids requirements for composite manager, thus fast rendering

canola, terra, getting confused!

- legal and licensing, again...

- terra (same as soil in portuguese) provides the framework

- canola is one application — maybe would remain closed

- stupid analogy “canola (oil) comes from terra (soil)”

terra overview

- core: mvc base, plugin loader, manager and task

- ui: lists, grid, screen and other widgets

- utils: misc stuff that did not fit elsewhere

plugin loading

- ask terra.core.Manager by terra_type filter or regular expression
- regular expression enables fancy queries

- give me all plugins that begin with “Model/Status/”
- filter will try fallbacks

- give the controller that handles “Model/Media/Audio/Local”
- tries “Controller/Media/Audio/Local”
- or fallback to “Controller/Media/Audio”
- or fallback to “Controller/Media”
- or fallback to “Controller”
- or fail!

- fallbacks are important to provide generic code and allow extensions

- plugins must inherit from terra.core.terra_object.TerraObject

plugin loading, continued

- plugin directory specified in /etc/canola.conf
- plugins specified as a directory or zip file
- plugins provides meta information in plugins.info (ini format)

- section name defines plugin name (used to enable/disable)
- modname: python module access (ie: iradio.model)
- enabled: boolean that provides default value
- rank: sort/priority order
- filter_map: list (one per line) with terra_type - class

tutorial: create your simple plugin

bootstrap

user$ mkdir urlbookmark
user$ mkdir urlbookmark/urlbookmark
user$ touch urlbookmark/__init__.py
user$ touch urlbookmark/urlbookmark/__init__.py

create your model (1/4)

$EDITOR urlbookmark/urlbookmark/model.py

from terra.core.manager import Manager
from terra.core.task import Task
from terra.core.model import ModelFolder, Model

manager = Manager()

import required modules and acquire the manager singleton

create your model (2/4)

PluginDefaultIcon = manager.get_class(”Icon/Plugin”)
class Icon(PluginDefaultIcon):

terra_type = ”Icon/Folder/Task/Audio/URLBookmark”
icon = ”icon/main_item/music”

- terra_type must match Folder.terra_type (s/Model/Icon/)

- icon defines edje group to use.

create your model (3/4)

class Folder(ModelFolder, Task):
terra_type = ”Model/Folder/Task/Audio/URLBookmark”
terra_task_type = ”Task/Folder/Task/Audio/URLBookmark”

def __init__(self, parent):
Task.__init__(self)
ModelFolder.__init__(self, ”URLBookmark”, parent)

def do_load(self):
for u in (”url1”, ”url2”, ”url3”):

URLBookmark(u, self)
ModelFolder.do_load() is called on first ModelFolder.load()

create your model (4/4)

AudioModel = manager.get_class(”Model/Media/Audio”)
class URLBookmark(AudioModel):

terra_type = ”Model/Media/Audio/URLBookmark”

def __init__(self, url, parent):
AudioModel.__init__(self, url, parent)
self.title = url
self.uri = url

set common properties used by media player

explain your plugin

$EDITOR urlbookmark/plugins.info

[URLBookmark Model]
modname = urlbookmark.model
enabled = True
rank = 255
filter_map = Icon/Folder/Task/Audio/URLBookmark - Icon

Model/Folder/Task/Audio/URLBookmark - Folder

have canola/terra to know about it

user$ cp urlbookmark /usr/share/canola/plugins
user$ terra-rescan-collections -c /etc/canola.conf
user$ terra-list-plugins -c /etc/canola.conf

terra parses plugins.info and compiles optimized meta
information in plugins.pickle

adding your own view

- create your own controller that creates your custom view

- view uses terra.ui.screen.Screen
- no need to write everything: inherit from similar classes

canola’s future

canola’s future

- it’s mostly ready, but needs work:
- refactor of some code (media players screens)
- improvements to notification area
- documentation
- more plugins!

- improve applications use the same base:
- memphis, in-car entertainment
- carman
- needs more!

we need more developers!

attracting more developers

- talk at events (may use this talk as base)

- offer mentoring (gsoc)

- help improve and integrate more plugins

gsoc results

google summer of code

successful thanks to effort of mentors and their students:

etrunko
(twitter)

lfelipe
(torrent)

glima
(picasa)

antognolli
(im)

Ryback_
(rtm)

twitter plugin

student: Kasun Herath
mentor: Eduardo Lima (etrunko)

torrent plugin

student: Lauri Vosandi
mentor: Luís Felipe Strano Moraes (lfelipe)

picasa plugin

student: Andrei Mirestean
mentor: Gustavo Lima Chaves

instant messenger plugin

student: Thiago Borges Abdnur (bolaum)
mentor: Rafael Antognolli

remember the milk plugin

student: Andrey Popelo
mentor: Ulisses Furquim (Ryback_)

thanks!

Gustavo Sverzut Barbieri

meet me outside for more about graphics, gui, canola,

linux, embedded, mobiles, profusion... beers!

barbieri@profusion.mobi
http://blog.gustavobarbieri.com.br/

http://profusion.mobi/

mailto:barbieri@profusion.mobi
http://blog.gustavobarbieri.com.br/
http://profusion.mobi/

	Agenda
	Introduction
	Canola: general overview
	Tutorial: simple plugin
	Future
	GSoC Results
	The End

