Regras Gerais de Transformação para Operações da Álgebra Relacional

1. Cascata de σ : uma condição de seleção conjuntiva pode ser desmembrada em uma cascata (ou seja, uma sequência) de operações σ individuais:

$$\sigma_{c1} \text{ and } c2 \text{ and } \dots \text{ and } cn(R)$$

$$\sigma_{c1}(\sigma_{c2}(\sigma_{c3}...(R)...))$$

Comutatividade de σ: a operação σ é comutativa:

$$\sigma_{c1}(\sigma_{c2}(R)) \equiv \sigma_{c2}(\sigma_{c1}(R))$$

3. Cascata de π : em uma cascata(sequencia) de π operações, todas exceto uma podem ser ignoradas:

$$\pi_{list1}(\pi_{list2}(...(R))) \equiv \pi_{list1}(R)$$

 Substituindo σ por π: se a condição c envolve somente os atributos A1,A2,...,An na lista de projeção, as duas operações podem ser comutadas:

$$\pi_{A1,A2,\ldots,An}(\sigma_c(R)) \equiv \sigma_c(\pi_{A1,\ldots,An}(R))$$

5. Comutatividade de ⋈ (e ×): a operação ⋈ é comutativa, assim como a operação × :

$$R \bowtie_c S \equiv S \bowtie_c R$$

 $R \times S \equiv R \times S$

6. Comutando σ por \bowtie (ou \times): se todos os atributos na condição de seleção c envolvem somente os atributos de umas das relações que estão sendo juntadas — digamos R — as duas operações podem ser comutadas da seguinte maneira: σ_c ($R \bowtie S$) \equiv (σ_c (R)) \bowtie S

Se a condição de seleção c puder ser escrita como (c1 and c2), onde cada condição c1 e c2 envolvem apenas atributos de R e S respectivamente, as operações podem comutar da seguinte maneira: $\sigma_c(R \bowtie S) \equiv (\sigma_{c1}(R)) \bowtie (\sigma_{c2}(S))$

As mesmas regras se aplicam ao \times .

7. Comutando π com \bowtie (ou \times): suponha a lista de projeções L=A1,A2,...,An,B1,...Bm, na qual os As são atributos de R e os Bs de S. Se a condição de junção c envolve somente atributos de L, as duas operações se comutam assim:

$$\pi_L(R \bowtie_c S) \equiv (\pi_{A1,\dots,An}(R)) \bowtie_c (\pi_{B1,\dots Bn}(S))$$
 se a condição c tiver mais atributos de R ou S que L, esses atributos devem ser acrescentados

8. As operações de conjunto ∪ e ∩ são comutativas, mas – não é.

na relação equivalente

- Associatividade de ⋈ , x , ∪ e ∩: essas quatro operações são individualmente associativas; ou seja, podem se associar cada uma consigo mesma dentro da expressão.
- 10. Comutando σ por operações de conjunto: a operação σ se alterna com \bigcup , \bigcap e Se Ξ se aplica a qualquer uma dessas 3 operações ao longo da expressão, temos: $\sigma_c(R \Xi S) \equiv (\sigma_c(r)) \Xi (\sigma_c(S))$
- 11. A operação π comuta-se com \bigcup : π L(R \bigcup S) \equiv (π L(R)) \bigcup (π L (S))