

Part II: Solutions Guide

103

6.1

If the time for an ALU operation is 4 ns, the cycle time would be 10 ns in the single-
cycle implementation. The cycle time for the pipelined implementation would be 4 ns
and the speedup obtained from pipelining the single-cycle implementation would only
be 10/4 = 2.5.

6.2

The diagram should show three instructions in the pipeline. A forwarding path is
needed from the second instruction to the third instruction because of the dependency
involving

$4

.

6.3

Obviously either the load or the

addi

 must occupy the branch delay slot. We can’t
just put the

addi

 into the slot because the branch instruction needs to compare

$3

 with
register

$4

 and the

addi

 instruction changes

$3

. In order to move the load into the
branch delay slot, we must realize that

$3

 will have changed. If you like, you can think
of this as a two-step transformation. First, we rewrite the code as follows:

Loop: addi $3, $3, 4
lw $2, 96($3)
beq $3, $4, Loop

Then we can move the load into the branch delay slot:

Loop: addi $3, $3, 4
beq $3, $4, Loop
lw $2, 96($3) # branch delay slot

6.4

The second instruction is dependent upon the first (

$2

). The third instruction is de-
pendent upon the first (

$2

). The fourth instruction is dependent upon the first (

$2

) and
second (

$4

). All of these dependencies will be resolved via forwarding.

6.5

Consider each register:

■

IF/ID holds PC+4 (32 bits) and the instruction (32 bits) for a total of 64 bits.

■

ID/EX holds PC+4 (32 bits), Read data 1 and 2 (32 bits each), the sign-extended
data (32 bits), and two possible destinations (5 bits each) for a total of 138 bits.

■

EX/MEM holds PC target if branch (32 bits), Zero (1 bit), ALU Result (32 bits),
Read data 2 (32 bits), and a destination register (5 bits) for a total of 102 bits.

■

MEM/WB holds the data coming out of memory (32 bits), ALU Result (32 bits),
and the destination register (5 bits) for a total of 69 bits.

6.6

No solution provided.

6.7

No solution provided.

6.8

No solution provided.

6

Solutions

104

Instructors Manual for Computer Organization and Design

6.9

First, try to fill in each field of each instruction:

stage rs rt rd shamt F immediate value
IF ? ? ? ? ?
ID 10 11 1 00000 101010 00001 00000 101010 = 2090
EX 5 6 0 00000 010000 00000 00000 010000 = 16
MEM ? ? 31 (R-type) ? ? 11111 ????? ??????
MEM ? 31 (non R-type) ? ? ? ?

(beq with RegDstdeasserted; RegDst is a don’t care for branches)
MEM ? ? ? 11111 ? 11111 ????? ??????

(beq with RegDst asserted; RegDst is a don’t care for branches)
WB ? ? 15 (R-type) ? ? 01111 ????? ??????
WB ? 15 (non R-type) ? ? ? ?

Now attempt to figure out which instructions they might be. Figures 6.28, 5.14, and
3.14 are useful.

IF: None of the signal paths in the IF stage are labeled, so IF could be fetching:

any instruction

ID: The combinatorial circuits in the Control unit in the ID stage are producing the EX,
MEM, and WB stage control bits 1100 000 10, respectively. From Figure 6.28, these con-
trol bits imply that the instruction in ID should cause the EX, MEM, and WB stages to
do an R-format instruction, not branch and not access memory, and write a result reg-
ister, respectively. For an R-format instruction, an F field value of 101010, as shown in
Figure 5.14, corresponds to set-on-less-than. So the instruction in ID is

slt $1, $10, $11

EX: The control signals in the EX stage show 0001 001 00 for the EX, MEM, and WB
fields, respectively. From Figure 6.28, we have the first four bits saying this is a

lw

 or

sw

 instruction; the next three control bits say memory is written, so it is a

sw

 instruc-
tion; and the last two bits say not to write a register, which is consistent with a store
operation. Thus, the instruction in EX is

sw $6, 16 ($5)

MEM: The control signals in the MEM stage show MEM stage control and WB stage
control bits of 100 and 00, respectively. These bits imply a

beq

 instruction and not
writing a result register, which is consistent with

beq

. The interpretation of the value
31 shown in Figure 6.71 on the lowest signal line to the right in the MEM stage
depends on how the instruction caused the RegDst control signal to be set when it
passed through the EX stage. Figure 6.28 shows that RegDst is a don’t care value for

beq

, so the 31 value could be the rt field or it could be the five high-order bits of the
address field. Thus, the possible instruction in MEM is

beq ?, $31, ? # if RegDst is deasserted for beq
 instructions

or

beq ?, ?, 11111??????????? # if RegDst is asserted for beq
instructions, and where the value
11111??????????? is the binary
representation of the branch
offset; negative, so for a loop

Part II: Solutions Guide

105

WB: The control signals in the WB stage show WB stage control bits of 11. This occurs
for a

lw

 instruction only. The destination of the register is

$15

 shown on the

Write_register

 signal line. The register address, the immediate value used to com-
pute the effective address in the ALU, and the effective address itself were not sent
further in the pipeline than the stages ID, EX, and MEM, respectively, so they are
unavailable. Thus, the instruction in WB can be determined to no greater extent than

lw $15, ? (?)

6.10

No solution provided.

6.11

In the fifth cycle of execution, register

$1

 will be written and registers

$11

 and

$12

 will be read.

6.12

The forwarding unit is seeing if it needs to forward. It is looking at the instruc-
tions in the fourth and fifth stages and checking to see whether they intend to write to
the register file and whether the register written is being used as an ALU input. Thus,
it is comparing 8 = 4? 8 = 1? 9 = 4? 9 = 1?

6.13

The hazard detection unit is checking to see whether the instruction in the ALU
stage is a

lw

 instruction and whether the instruction in the ID stage is reading the reg-
ister that the

lw

 will be writing. If it is, it needs to stall. If there is a

lw

 instruction, it
checks to see whether the destination is register 11 or 12 (the registers being read).

6.14

5 + 99

´

 2 = 203 cycles to execute the instructions, CPI = 2.03.

6.15

It will take 8 cycles to execute the code, one of which is a bubble needed because
of the dependency involving the subtract instruction and the load.

6.16

6.17

No solution provided.

6.18

No solution provided.

Input name # of bits Comment

ID/EX.RegisterRs 5 Names an operand, current value may exist in pipeline, superseding value
in Register file

ID/EX.RegisterRt 5 Names other operand

EX/MEM.RegisterRd 5 Names the destination of a result in the pipeline

EX/MEM.RegWrite 1 Tells if the value on the Rd datapath lines is to be written to the register
file and, thus, if that value should be forwarded

MEM/WB.RegisterRd 5 Names the destination of a result in the pipeline

MEM/WB.RegWrite 1 Tells if the value on the Rd datapath lines is to be written to the register
file and, thus, if that value should be forwarded

Output name # of bits Comment

ForwardA 2 See Figure 6.39

ForwardB 2 See Figure 6.39

106

Instructors Manual for Computer Organization and Design

6.19

The situation is similar in that a read is occurring after a write. The situation is
dissimilar in that the read occurs much later (in the fourth cycle for load instructions
vs. in the second cycle for add instructions) and that the write occurs earlier (in the
fourth cycle instead of the fifth cycle). For these reasons, there is no problem. Another
way of looking at it is that both the read and write occur in the same cycle (for memory
access) and thus we can’t possibly have a hazard!

6.20

This solution checks for the

lw-sw

 combination when the

lw

 is in the MEM stage
and the

sw

is in the EX stage.

if (ID/EX.MemWrite and // sw in EX stage?
EX/MEM.MemRead and // lw in MEM stage?
(ID/EX.RegisterRt = EX/MEM.RegisterRd) and

// same register?
(EX/MEM.RegisterRd

¹

 0)) // but not r0?
then

Mux = 1 // forward lw value
else

Mux = 0 // do not forward

ALUSrc

M
u
x

ALU

MEM/WB

Data
memory

Forwarding
unit

EX/MEM

M
u
x

M
u
x

Part II: Solutions Guide

107

The following solution checks for the

lw-sw

 combination when the

lw

 is in the WB
stage and the

sw

 is in the MEM stage.

if (EX/MEM.MemWrite and // sw in MEM stage?
(MEM/WB.MemToReg = 1) and MEM/WB.RegWrite and

// lw in WB stage?
(EX/MEM.RegisterRd = MEM/WB.RegisterRd) and

// same register?
(MEM/WB.RegisterRd

¹

 0)) // but not r0?
then

Mux = 1 // forward lw value
else

Mux = 0 // do not forward

For this solution to work, we have to make a slight hardware modification: We must
be able to check whether or not the

sw

source register (

rt

) is the same as the

lw

 desti-
nation register (as in the previous solution). However, the

sw

 source register is not
necessarily available in the MEM stage. This is easily remedied: As it is now, the

RegDst

 setting for

sw

 is

X, or “don’t care” (refer to Figure 6.28 on page 469). Remem-
ber that RegDst chooses whether rt or rd is the destination register of an instruction.
Since this value is never used by a sw, we can do whatever we like with it—so let’s
always choose rt. This guarantees that the source register of a sw is available for the
above equation in the MEM stage (rt will be in EX/MEM.WriteRegister). (See Figure
6.30 on page 470.)

A lw–sw stall can be avoided if the sw offset register (rs) is not the lw destination reg-
ister or if the lw destination register is r0.

ALUSrc

M
u
x

ALU

MEM/WB

Data
memory

Forwarding
unit

EX/MEM

M
u
x

M
u
x

108 Instructors Manual for Computer Organization and Design

if ID/EX.MemRead and // lw in EX stage?
((ID/EX.RegisterRt = IF/ID.RegisterRs) or // same register?
(ID/EX.RegisterRt = IF/ID.RegisterRt)) and // but not...
not (IF/ID.MemWrite and // sw in ID stage?
(ID/EX.RegisterRt = IF/ID.RegisterRs)) and // same register?
(ID/EX.RegisterRt ¹ 0) // register r0?

then
Stall the pipeline

Note that IF/ID.MemWrite is a new signal signifying a store instruction. This must be
decoded from the opcode. Checking that the lw destination is not r0 is not done in the
stall formula on page 490. That is fine. The compiler can be designed to never emit
code to load register r0, or an unnecessary stall can be accepted, or the chack may be
added, as is done here.

6.21 The memory address can now come straight from Read data 1 rather than from
the ALU output; this means that the memory access can be done in the EX stage, since
it doesn’t need to wait for the ALU. Thus, the MEM stage can be eliminated completely.
(The branch decision can be taken care of in another stage.) The instruction count will
go up because some explicit addition instructions will be needed to replace the addi-
tions that used to be implicit in the loads and stores with non-zero displacements. The
CPI will go down, because stalls will no longer be necessary when a load is followed
immediately by an instruction that uses the loaded value. Forwarding will now resolve
this hazard just like for ALU results used in the next instruction.

6.22 An addm instruction needs 6 steps.

1. Fetch instruction.

2. Decode instruction and read registers.

3. Calculate memory address of memory operand.

4. Read memory.

5. Perform the addition.

6. Write the register.

This means we will need an extra pipeline stage (and all other instructions will go
through an additional stage). This can increase the latency of a single instruction, but
not the CPU throughput because instructions will still be coming out of the pipeline at
a rate of 1 per cycle (if no stalls). In fact, a longer pipeline will have a greater potential
for hazards and longer penalties for those hazards, which will decrease the throughput.
Moreover, the additional hardware for new stages, hazard detection, and forwarding
logic will increase the cost.

6.23

lw $3, 0($5)
add $7, $7, $3 # requires stall on $3
sw $6, 0($5)
lw $4, 4($5)
add $8, $8, $4 # requires stall on $4
add $10, $7, $8
beq $10, $11, Loop

Part II: Solutions Guide 109

6.24

36 beqd $1, $3, 8
40 sub $10, $4, $8 # delay slot, always executed

... the rest is the same.

6.25 No solution provided.

6.26 Flushing takes place after a taken branch. Stalling takes place if a dependency
cannot be resolved by forwarding (if a lw is in the execute stage, a preceding dependent
instruction must be stalled one cycle). If we assume that branch resolution takes place
in the MEM stage, then for the sample code, in the fourth cycle of execution we have
exactly this situation. The beq instruction will require a flush of the three lw, add, and
sw instructions, and the lw instruction will require a stall of the add and sw instructions.
Cooperation will take place regarding zeroing control signals. However, a conflict aris-
es as to whether the PC should be written (flush says yes, stall says no). The flush
should have priority. (A proposed solution to this problem is to change the hazard de-
tection unit so that when it looks at the RegWrite signal in the EX stage, it sees the sig-
nal after it goes through the MUX used to flush the pipeline.)

6.27 See Figure 6.51 on page 499. Control in ID must be augmented to produce a sig-
nal indicating that the instruction in ID is beq. Register value equality is detected using
a bank of XNOR gates. PCSrc (see Figure 6.30) is then generated in ID, making the
branch decision in ID and reducing branch delay to a single instruction.

6.28

slt $1, $8, $9

movz $10, $8, $1

movn $10, $9, $1

= = PCSrc

A0
B0

A31
B31

Control
beq

110 Instructors Manual for Computer Organization and Design

6.29 The reason why sequences of this sort can be higher performance than versions
that use conditional branching, even if the instruction count isn’t reduced, is that there
is no control hazard introduced, unlike with branching. Branching generally introduc-
es stalls, which waste cycles, because the normal sequential flow of execution is dis-
rupted. The new instructions, in contrast, are part of the normal sequential execution
stream. The only hazards they introduce are normal data hazards, as with any ALU in-
struction, and those can be completely conquered using forwarding.

6.30 The code has been unrolled once and registers have been renamed. The question
is simply how to reschedule the code for optimum performance. There are many pos-
sible solutions, one of which is

Loop: lw $t0, 0($s1)
lw $t1, –4($s1)
addu $t0, $t0, $s2
addu $t1, $t1, $s2
sw $t0, 0($s1)
sw $t1, –4($s1)
addi $s1, $s1, –8
bne $s1, $zero, Loop

Regarding performance, assume $s1 is initially 8X. The code will require X iterations
and a total of 11X cycles to execute assuming branch resolution is complete in the
MEM stage. If branch resolution is done in the ID stage, as shown in Figure 6.51, then
the total cycles to execute would be 9X. If the code is not unrolled (as on page 513) it
will require 2X iterations and finish on cycle (2X) ´ 9 (assuming a one-cycle stall after
the load). So, in this case, unrolling yields an improvement of 18/11 = 1.64 times as
fast.

6.31 First, we can unroll the loop twice and reschedule, assuming that $s1 is a multi-
ple of 12:

Loop: lw $t0, 0($s1)
lw $t1, –4($s1)
lw $t2, –8($s1)
addu $t0, $t0, $s2
addu $t1, $t1, $s2
addu $t2, $t2, $s2
sw $t0, 0($s1)
sw $t1, –4($s1)
sw $t2, –8($s1)
addi $s1, $s1, –12
bne $s1, $zero, Loop

Part II: Solutions Guide 111

There are many ways to modify this code so that it still works correctly if $s2 is not a
multiple of 12. Probably the best method would involve determining $s2 mod 12
before executing the loop. One of the more simple solutions appears below. In this
case we simply handle the extra cases at the end, and detect them by subtracting 12
from $s1 before we start:

Loop: addi $s1, $s1, –12
bltz $s1, Finish
lw $t0, 12($s1)
lw $t1, 8($s1)
lw $t2, 4($s1)
addu $t0, $t0, $s2
addu $t1, $t1, $s2
addu $t2, $t2, $s2
sw $t0, 12($s1)
sw $t1, 8($s1)
sw $t2, 4($s1)
bne $s1, $zero, Loop
j Done

Finish: lw $t0, 12($s1) # $s1 may be –4 or –8
addu $t0, $t0, $s2 # This handles 8 (if -4) or 4 (if –8)
sw $t0, 12($s1)
addi $s1, $s1, 4 # $s1 is now 0 or –4
bne $s1, $zero, Done # if $s1 is not 0 came in at –8
lw $t0, 4($s1)
addu $t0, $t0, $s2
sw $t0, 4($s1)

Done: ...

6.32 No solution provided.

6.33 No solution provided.

6.34 No solution provided.

6.35 No solution provided.

112 Instructors Manual for Computer Organization and Design

7.1–7.6 The key features of solutions to these problems:

■ Low temporal locality for data means accessing variables only once.

■ High temporal locality for data means accessing variables over and over again.

■ Low spatial locality for data means no marching through arrays; data is
scattered.

■ High spatial locality for data implies marching through arrays.

■ Low temporal locality for code means no loops and no reuse of instructions.

■ High temporal locality for code means tight loops with lots of reuse.

■ Low spatial locality for code means lots of jumps to far away places.

■ High spatial locality for code means no branches/jumps at all.

7.7

7 Solutions

Reference Hit or miss

1 Miss

4 Miss

8 Miss

5 Miss

20 Miss

17 Miss

19 Miss

56 Miss

9 Miss

11 Miss

4 Miss

43 Miss

5 Hit

6 Miss

9 Hit

17 Hit

Part II: Solutions Guide 113

Here is the final state of the cache:

7.8

Here is the final state of the cache:

7.9 There are 4K entries and each entry needs 128 (data) + 16 (tag) + 1 (valid) = 145
bits. This results in 593,920 bits, or 74,240 bytes. A bit more than the 64-KB cache size
as described in the figure caption!

Block # Address

0

1 17

2

3 19

4 4

5 5

6 6

7

8 56

9 9

10

11 43

12

13

14

15

Reference Hit or miss

1 Miss

4 Miss

8 Miss

5 Hit

20 Miss

17 Miss

19 Hit

56 Miss

9 Miss

11 Hit

4 Miss

43 Miss

5 Hit

6 Hit

9 Miss

17 Hit

Block # Starting address

0 16

1 4

2 8

3

114 Instructors Manual for Computer Organization and Design

7.10 Simply extend the comparison to include the valid bit as the high-order bit of the
cache tag and extend the address tag by adding a high-order “1” bit. Now the values
are equal only if the tags match and the valid bit is a 1.

7.11 The miss penalty is the time to transfer one block from main memory to the
cache. Assume that it takes one clock cycle to send the address to the main memory.

a. Configuration (a) requires 16 main memory accesses to retrieve a cache block
and words of the block are transferred 1 at a time.

Miss penalty = 1 + 16 ´ 10 + 16 ´ 1 = 177 clock cycles.

b. Configuration (b) requires 4 main memory accesses to retrieve a cache block and
words of the block are transferred 4 at a time.

Miss penalty = 1 + 4 ´ 10 + 4 ´ 1 = 45 clock cycles.

c. Configuration (c) requires 4 main memory accesses to retrieve a cache block and
words of the block are transferred 1 at a time.

Miss penalty = 1 + 4 ´ 10 + 16 ´ 1 = 57 clock cycles.

7.12 Effective CPI = Base CPI + Miss rate per instruction ́ Miss penalty.

For memory configurations (a), (b), and (c):

a. Effective CPI = 1.2 + 0.005 ´ 177 = 2.085 clocks/instruction.

b. Effective CPI = 1.2 + 0.005 ´ 45 = 1.425 clocks/instruction.

c. Effective CPI = 1.2 + 0.005 ´ 57 = 1.485 clocks/instruction.

Now

Speedup of A over B = Execution time B / Execution time A,

and

Execution time = Number of instructions ´ CPI ´ Clock cycle time.

We have the same CPU running the same software on the various memory configura-
tions, so the number of instructions and the clock cycle time are fixed. Thus, speed can
be compared by comparing CPI.

Speedup of configuration (b) over configuration (a) = 2.085/1.425 = 1.46.

Speedup of configuration (b) over configuration (c) = 1.485/1.425 = 1.04.

7.13 The shortest reference string will have 4 misses for C1 and 3 misses for C2; this
leads to 32 versus 33 miss cycles. The following reference string will do: 0, 4, 8, 11.

Part II: Solutions Guide 115

7.14 For C2 to have more misses, we must have a situation where a block is replaced
in C2 and then another reference occurs to a different word (in C1) that was replaced.
This has to happen more than once. Here’s one example string:

7.15 AMAT = Hit time + Miss time ´ Miss penalty.

AMAT = 2 ns + (20 ´ 2 ns) ´ 0.05 = 4 ns.

7.16 AMAT = (1.2 x 2 ns) + (20 ´ 2 ns ´ 0.03) = 2.4 ns + 1.2 ns = 3.6 ns. Yes, this is a
good choice.

7.17 Execution time = Clock cycle ´ IC ´ (CPI + Cache miss cycles per instruction)

Execution timeoriginal = Clock cycle ´ IC ´ (CPI + Cache miss cycles per instruction)

Execution timeoriginal = 2 ´ IC ´ (2 + 1.5 ´ 20 ´ 0.05) = 7 IC

Execution timenew = 2.4 ´ IC ´ (2 + 1.5 ´ 20 ´ 0.03) = 6.96 IC

Hence doubling the cache size to improve miss rate at the expense of stretching the
clock cycle results in essentially no net gain.

7.18 The largest direct-mapped cache with one-word blocks would be 256 KB in size.
The address breakdown is 14 bits for tag, 16 bits for index, 0 bits for block offset, and 2
bits for byte offset. A total of 12 chips will be required—4 for overhead.

7.19 If the block size is four words, we can build a 512-KB cache. The address break-
down is 13 bits for tag, 15 bits for index, 2 bits for block offset, and 2 bits for byte offset.
A total of 18 chips will be required—2 for overhead.

7.20

Addresses Cache 1 Cache 2

0 Miss Miss

1 Miss Hit

16 Miss Miss

1 Hit Miss

16 Hit Miss

Total misses 3 4

Reference Hit or miss

1 Miss

4 Miss

8 Miss

5 Miss

20 Miss

17 Miss

19 Miss

56 Miss

9 Miss

11 Miss

4 Hit

43 Miss

5 Hit

6 Miss

9 Hit

17 Hit

116 Instructors Manual for Computer Organization and Design

Here is the final state of the cache with LRU order shown right to left:

7.21

Here is the final state of the cache:

Block # Element #1 address Element #1 address

0 56 8

1 17 9

2

3 43 11

4 4 20

5 5

6 6

7

Reference Hit or miss

1 Miss

4 Miss

8 Miss

5 Miss

20 Miss

17 Miss

19 Miss

56 Miss

9 Miss

11 Miss

4 Hit

43 Miss

5 Hit

6 Miss

9 Hit

17 Hit

Block # Address Address

0 17 Most recently used

1 9

2 6

3 5

4 43

5 4

6 11

7 56

8 19

9 20

10 8

11 1

12

13

14

15 Least recently used

Part II: Solutions Guide 117

7.22

Here is the final state of the cache LRU order (left to right):

7.23 Two principles apply to this cache behavior problem. First, a two-way set-asso-
ciative cache of the same size as a direct-mapped cache has half the number of sets. Sec-
ond, LRU replacement can behave pessimally (as poorly as possible) for access patterns
that cycle through a sequence of addresses that reference more blocks than will fit in a
set managed by LRU replacement.

Consider three addresses—call them A, B, C—that all map to the same set in the two-
way set-associative cache, but to two different sets in the direct-mapped cache. With-
out loss of generality, let A map to one set in the direct-mapped cache and B and C
map to another set. Let the access pattern be A B C A B C A . . . and so on. The direct-
mapped cache will then have miss, miss, miss, hit, miss, miss, hit, . . ., and so on. With
LRU replacement, the block at address C will replace the block at the address A in the
two-way set-associative cache just in time for the A to be referenced again. Thus, the
two-way set-associative cache will miss on every reference as this access pattern
repeats.

7.24

Address size: k bits
Cache size: S bytes/cache
Block size: B = 2b bytes/block
Associativity: A blocks/set

Number of sets in the cache:

Sets/cache =

=

Reference Hit or miss

1 Miss

4 Miss

8 Miss

5 Hit

20 Miss

17 Miss

19 Hit

56 Miss

9 Miss

11 Hit

4 Miss

43 Miss

5 Hit

6 Hit

9 Hit

17 Miss

Address Address Address Address

40 4 8 16

(Bytes/cache)
(Blocks/set) (Bytes/block)´
--

S
AB

118 Instructors Manual for Computer Organization and Design

Number of address bits needed to index a particular set of the cache:

Cache set index bits = log2 (Sets/cache)

= log2

= log2 – b

Number of two-input XOR gates needed for a tag address match for an entire set:

Tag address bits/block = (Total address bits) – (Cache set index bits) – (Block offset bits)

= k – – b

= k –

XOR gates/set = (Blocks/set) ´ (Tag address bits/block) ´ (1 XOR gate/bit)

= A

Number of bits in tag memory for the cache:

Bits in tag memory/cache = (Tag address bits/block) ́ (Sets/cache) ´ (Blocks/set)

=

=

7.25 Fully associative cache of 3K words? Yes. A fully associative cache has only one
set, so no index is used to access the cache. Instead, we need to compare the tag with
every cache location (3K of them).

Set-associative cache of 3K words? Yes. Implement a three-way set-associative cache.
This means that there will be 1024 sets, which require a 10-bit index field to access.

Direct-mapped cache of 3K words? No. (Cannot be done efficiently.) To access a 3K-
word direct-mapped cache would require between 11 and 12 index bits. Using 11 bits
will allow us to only access 2K of the cache, while using 12 bits will cause us to map
some addresses to nonexistent cache locations.

7.26 Fully associative cache of 300 words? Yes. A fully associative cache has only 1 set,
so no index is used to access the cache. Instead, we need to compare the tag with every
cache location (300 of them).

Set-associative cache of 300 words? Yes. Implement a 75-way set-associative cache.
This means that there will be 4 sets, which require a 2-bit index field to access.

Direct-mapped cache of 300 words? No. (Cannot be done efficiently.) To access a 300-
word direct-mapped cache would require between 8 and 9 index bits. Using 8 bits will
allow us to only access 256 words of the cache, while using 9 bits will cause us to map
some addresses to nonexistent cache locations.

S
AB
--------è ø

æ ö

S
A
----è ø

æ ö

log2
S
A
----è ø

æ ö b–è ø
æ ö

log2
S
A
----è ø

æ ö

k log2–
S
A
----è ø

æ ö
è ø
æ ö

k log2–
S
A
----è ø

æ ö
è ø
æ ö S

AB
--------A

S
B
--- k log2–

S
A
----è ø

æ ö
è ø
æ ö

Part II: Solutions Guide 119

7.27 Here are the cycles spent for each cache:

So, C3 spends the least time on misses and C1 spends the most.

7.28 Execution time = CPI ´ Clock cycle ´ Instruction count

Execution timeC1 = 0.56 ´ 2 ns ´ IC = 1.12 ´ IC ´ 10–9

Execution timeC2 = 0.45 ´ 2 ns ´ IC = 0.9 ´ IC ´ 10–9

Execution timeC3 = 0.40 ´ 2.4 ns ´ IC = 0.96 ´ IC ´ 10–9

So C2 is the fastest and C1 is the slowest.

7.29 If direct-mapped and stride = 132, then we can assume without loss of general-
ity that array[0] is in slot 0, along with array[1], [2], [3]. Then, slot 1 has [4],
[5], [6], [7], slot 2 has [8], [9], [10], [11], and so on until slot 15 has [60],
[61], [62], [63] (there are 16 slots ´ 16 bytes = 256 bytes in the cache). Then wrap-
ping around, we find also that slot 0 has [64], [65], [66], [67] and also [128],
[129], [130], [131], etc. Thus if we look at array[0], array[132], we are looking
at two different slots. After filling these entries, there will be no misses. Thus the ex-
pected miss rate is about 0. If the stride equals 131, we are looking at slot 0 and slot 0
again. Each reference will bounce out the other, and we will have 100% misses. If the
cache is two-way set-associative, even if two accesses are in the same cache line they
can coexist, so the miss rate will be 0. Alternative explanation: 132 in binary is
10000100, and clearly when this is added to the word address of array[0], bit 2 will
change and thus the slots are different. 131 in binary is 10000011, and in this case the
last two bits are used for the block offset within the cache. The addition will not change
the index, so the two entries will map to the same location.

7.30 We can build a 384-KB cache. The address breakdown is 15 bits for tag, 15 bits for
set index, 0 bits for block offset, and 2 bits for byte offset. A total of 18 chips will be re-
quired; 6 for overhead.

7.31 No solution provided.

7.32 The total size is equal to the number of entries times the size of each entry. The
number of entries is equal to the number of pages in the virtual address, which is

The width of each entry is 4 + 3 bits = 40 bits = 8 bytes. Thus the page table contains
229 bytes or 512 MB!

7.33 No solution provided.

7.34 No solution provided.

Cache Miss penalty
Instruction miss cycles

per instruction
Data miss cycles

per data reference
Total miss cycles
per instruction

C1 6 + 1 = 7 4% ´ 7 = 0.28 8% ´ 7 = 0.56 0.56

C2 6 + 4 = 10 2% ´ 10 = 0.20 5% ´ 10 = 0.50 0.45

C3 6 + 4 = 10 2% ´ 10 = 0.20 4% ´ 10 = 0.40 0.40

240 bytes
16 KB

----------------------- 2

40 bytes

2

4 2
10

 bytes
------------------------------ 2

26

= =

120

Instructors Manual for Computer Organization and Design

7.35–7.36

Pages are 4-KB in size and each entry uses 32 bits, so we get 1K worth of
page table entries in a page. Each of these entries points to a physical 4-KB page, mak-
ing it possible to address 2

10

´

 2

12

 = 2

22

 bytes = 4 MB of memory. But only half of these
are valid, so 2 MB of our virtual address space would be in physical memory. If there
are 1K worth of entries per page table, the page table offset will occupy 10 bits and the
page table number also 10 bits. Thus we only need 4 KB to store the first-level page ta-
ble as well.

7.37

No solution provided.

7.38

Rewriting the program will likely reduce compulsory as well as capacity misses
(if you are lucky, maybe they will conflict). Increasing the clock rate will have no
change. Increasing the associativity should reduce conflict.

7.39

No solution provided.

7.40

No solution provided.

7.41

No solution provided.

7.42

No solution provided.

7.43

No solution provided.

7.44

No solution provided.

7.45

This optimization takes advantage of spatial locality. This way we update all of
the entries in a block before moving to another block.

7.46

No solution provided.

7.47

No solution provided.

7.48

No solution provided.

Part II: Solutions Guide

121

8.1

Each transaction requires 50,000 instructions and 5 I/O operations. The CPU can
handle transactions at a maximum rate of 50M/50K or 1000 transactions per second.
The I/O limit for system A is 200 TPS and for system B it’s 150 TPS. These are the lim-
iting rates.

8.2

For system A, 20 ms/IO

´

 5 IO/transaction

´

n

 transactions/10 = 1000 ms,

n

 = 100
TPS.

Assume system B operates at greater than 100 TPS (and less than 500 I/O operations
per second). Let

n

 be the number over 100:

(18

´

 5

´

 100 + n

´

 5

´

 25)/10 = 1000 ms.

n

 = 8 or 108 TPS.

This solution ignores the fact that the first set of transactions that can be performed
simultaneously numbers only 9. After the first 9 transactions, subsequent transactions
can be processed in batches of 10, comprising one transaction dependent on a preced-
ing transaction and a new set of 9 independent transactions.

8.3

After reading sector 7, a seek is necessary to get to the track with sector 8 on it. This
will take some time (on the order of a millisecond, typically), during which the disk
will continue to revolve under the head assembly. Thus, in the version where sector 8
is in the same angular position as sector 0, sector 8 will have already revolved past the
head by the time the seek is completed and some large fraction of an additional revo-
lution time will be needed to wait for it to come back again. By skewing the sectors so
that sector 8 starts later on the second track, the seek will have time to complete, and
then the sector will soon thereafter appear under the head without the additional rev-
olution.

8.4

For ATM to be twice as fast, we would need

15 + 6 + 200 + 241 + Transmission time

Ethernet

 = 2

´

 (50 + 6 + 207 + 360 + Transmission time

ATM

)

462 + X/1.125 = 2(623 + X/10), so X = 1138 bytes.

8.5

100 / (3

´

 10

8

´

 .5) = .67 microseconds and 5000

´

 10

3

 / (3

´

 10

8

´

 .5) = .034 seconds.

8.6

.67

´

 10

–6

´ 5 ´ 106 = 3.35 bytes for the 100-meter network, and .034 ´ 5 ´ 106 = .17
MB for the 5000-km network.

8.7 4 KHz = 4 ´ 103 samples/sec ´ 2 bytes/sample = 8 ́ 103 bytes/sec ´ 100 conversa-
tions = 8 ´ 105 bytes/sec. Transmission time per packet is 1 KB/1 MB/sec = 1 millisec-
ond plus a 350-microsecond latency for a total of 0.00135 seconds. The time to transmit
all 800 packets collected from one second of monitoring is 800 ́ 0.00135 = 1.08 seconds.
Thus, the chosen network with its given latency does not have sufficient effective band-
width for the task.

8.8 We determine an average disk access time of 8 ms+ 4.2 ms + .2 ms + 2 ms = 14.4
ms. Since each block processed involves two accesses (read and write), the disk com-
ponent of the time is 28.8 ms per block processed. The (non-overlapped) computation
takes 20 million cycles at 400 MHz, or another 50 ms. Thus, the total time to process one
block is 78.8 ms, and the number of blocks processed per second is simply 1/0.0788 =
12.7.

8 Solutions

122 Instructors Manual for Computer Organization and Design

8.9 For Ethernet, Latency = 462 + Transmission time. For ATM we have Latency = 623
+ Transmission time. For Ethernet, transmission times are 8.9 and 133.3; for ATM, 1
and 15. Thus, Ethernet total = 1066 and ATM = 1262. For this application, Ethernet is
better due to the smaller latencies (all units are microseconds).

8.10 For four-word block transfers, the bus bandwidth was 71.11 MB/sec. For 16-
word block transfers, the bus bandwidth was 224.56 MB/sec. The disk drive has a
transfer rate of 5 MB/sec. Thus for four-word blocks we could sustain 71/5 = 14 simul-
taneous disk transfers, and for 16-word blocks we could sustain 224 / 5 = 44 simulta-
neous disk transfers. The number of simultaneous disk transfers is inherently an
integer and we want the sustainable value. Thus we take the floor of the quotient of bus
bandwidth divided by disk transfer rate.

8.11 For the four-word block transfers, each block now takes

1. 1 cycle to send an address to memory

2. 150 ns / 5 ns = 30 cycles to read memory

3. 2 cycles to send the data

4. 2 idle cycles between transfers

This is a total of 35 cycles, so the total transfer takes 35 ´ 64 = 2240 cycles. Modifying
the calculations in the example, we have a latency of 11,200 ns, 5.71M trans-
actions/second, and a bus bandwidth of 91.43 MB/sec.

For the 16-word block transfers, each block now takes

1. 1 cycle to send an address to memory

2. 150 ns or 30 cycles to read memory

3. 2 cycles to send the data

4. 4 idle cycles between transfers, during which the read of the next block is com-
pleted

Each of the three remaining four-word blocks requires repeating the last two steps.
This is a total of 1 + 30 + 4 ´ (2 + 4) = 55 cycles, so the transfer takes 55 ´ 16 = 880
cycles. We now have a latency of 4400 ns, 3.636M transactions/second, and a bus
bandwidth of 232.73 MB/sec.

Note that the bandwidth for the larger block size is only 2.54 times higher given the
new read times. This is because the 30 ns for subsequent reads results in fewer oppor-
tunities for overlap, and the larger block size performs (relatively) worse in this situa-
tion.

8.12 The key advantage would be that a single transaction takes only 45 cycles, as
compared with 57 cycles for the larger block size. If because of poor locality we were
not able to make use of the extra data brought in, it might make sense to go with a
smaller block size. Said again, the example assumes we want to access 256 words of da-
ta, and clearly larger block sizes will be better. (If it could support it, we’d like to do a
single 256-word transaction!)

Part II: Solutions Guide 123

8.13 Assume that only the four-word reads described in the example are provided by
the memory system, even if fewer than four words remain when transferring a block.
Then,

The following graph plots latency and bandwidth versus block size.

Block size (words)

4 5 6 7 8 9 10 11 12 13 14 15 16

Number of four-word transfers to
send the block

1 2 2 2 2 3 3 3 3 4 4 4 4

Time to send address to memory
(bus cycles)

1 1 1 1 1 1 1 1 1 1 1 1 1

Time to read first four words in
memory (bus cycles)

40 40 40 40 40 40 40 40 40 40 40 40 40

Block transfer time, at 2 transfer
bus cycles and 2 idle bus cycles
per four-word transfer (bus
cycles)

4 8 8 8 8 12 12 12 12 16 16 16 16

Total time to transfer one block
(bus cycles)

45 49 49 49 49 53 53 53 53 57 57 57 57

Number of bus transactions to
read 256 words using the given
block size

64 52 43 37 32 29 26 24 22 20 19 18 16

Time for 256-word transfer (bus
cycles)

2880 2548 2107 1813 1568 1537 1378 1272 1166 1140 1083 1026 912

Latency (ns) 14400 12740 10535 9065 7840 7685 6890 6360 5830 5700 5415 5130 4560

Number of bus transactions
(millions per second)

4.444 4.082 4.082 4.082 4.082 3.774 3.774 3.774 3.774 3.509 3.509 3.509 3.509

Bandwidth (MB/sec) 71.1 80.4 97.2 113.0 130.6 133.2 148.6 161.0 175.6 179.6 189.1 199.6 224.6

La
te

nc
y

(n
s)

B
an

dw
id

th
 (
M

B
/s

ec
)

0

2000

6000

12000

10000

4000

8000

14000

16000

4 5 6 7 8 9 10 11 12 13 14 15 16

Block size (words)

250.0

200.0

150.0

100.0

50.0

0.0

Latency

Bandwidth

124 Instructors Manual for Computer Organization and Design

8.14 From the example, a four-word transfer takes 45 bus cycles and a 16-word block
transfer takes 57 bus cycles. Then,

The following graph plots read latency with 4-word and 16-word blocks.

Read size (words)

4 5 6 7 8 9 10 11 12 13 14 15 16 32 64 128 256

Number of four-
word transfers
to send the
data

1 2 2 2 2 3 3 3 3 4 4 4 4 8 16 32 64

Number of 16-
word transfers
to send the
data

1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 8 16

Total read time
using four-
word blocks
(bus cycles)

45 90 90 90 90 135 135 135 135 180 180 180 180 360 720 1440 2880

Total read time
using 16-word
blocks (bus
cycles)

57 57 57 57 57 57 57 57 57 57 57 57 57 114 228 456 912

Latency using
four-word
blocks (ns)

225 450 450 450 450 675 675 675 675 900 900 900 900 1800 3600 7200 14400

Latency using
16-word
blocks (ns)

285 285 285 285 285 285 285 285 285 285 285 285 285 570 1140 2280 4560

Bandwidth
using four-
word blocks
(MB/sec)

71.1 44.4 53.3 62.2 71.1 53.3 59.3 65.2 71.1 57.8 62.2 66.7 71.1 71.1 71.1 71.1 71.1

Bandwidth
using 16-word
blocks
(MB/sec)

56.1 70.2 84.2 98.2 112.3 126.3 140.4 154.4 168.4 182.5 196.5 210.5 224.6 224.6 224.6 224.6 224.6

La
te

nc
y

(n
s)

100

1000

10000

4 5 6 7 8 9 10 11 12 13 14 15 16 32 64 128 256

Read size (words)
4-word blocks

16-word blocks

Part II: Solutions Guide 125

The following graph plots bandwidth with 4-word and 16-word blocks.

8.15

For four-word blocks:
Send address and first word simultaneously = 1 clock

Time until first write occur = 40 clocks
Time to send remaining three words over 32-bit bus = 3 clocks

Required bus idle time = 2 clocks
Total time = 46 clocks

Latency = 64 four-word blocks at 46 cycles per block = 2944 clocks = 14720 ns.
Bandwidth = (256 ´ 4 bytes)/14720 ns = 69.57 MB/sec.

For eight-word blocks:
Send address and first word simultaneously = 1 clock

Time until first write occurs = 40 clocks
Time to send remaining seven words over 32-bit bus = 7 clocks

Required bus idle time (two idle periods) = 4 clocks
Total time = 52 clocks

Latency = 32 8-word blocks at 52 cycles per block = 1664 clocks = 8320 ns.
Bandwidth = (256 ´ 4 bytes)/8320 ns = 123.08 MB/sec.

In neither case does the 32-bit address/32-bit data bus outperform the 64-bit com-
bined bus design. For smaller blocks there could be an advantage if the overhead of a
fixed four-word block bus cycle could be avoided.

8.16 For a 16-word read from memory, there will be four sends from the four-word-
wide memory over the four-word-wide bus. Transactions involving more than one
send over the bus to satisfy one request are typically called burst transactions.

For burst transactions, some way must be provided to count the number of sends so
that the end of the burst will be known to all on the bus. We don’t want another device
trying to access memory in a way that interferes with an ongoing burst transfer. The
common way to do this is to have an additional bus control signal, called BurstReq or
Burst Request, that is asserted for the duration of the burst. This signal is unlike the
ReadReq signal of Figure 8.10, which is asserted only long enough to start a single
transfer. One of the devices can incorporate the counter necessary to track when
BurstReq should be deasserted, but both devices party to the burst transfer must be
designed to handle the specific burst (four words, eight words, or other amount)
desired. For our bus, if BurstReq is not asserted when ReadReq signals the start of a
transaction, then the hardware will know that a single send from memory is to be
done.

B
an

dw
id

th
 (

M
B

/s
ec

)

250

200

150

100

50

0

4 5 6 7 8 9 10 11 12 13 14 15 16 32 64 128 256

Read size (words)
4-word blocks

16-word blocks

126 Instructors Manual for Computer Organization and Design

So the solution for the 16-word transfer is as follows: The steps in the protocol begin
immediately after the device signals a burst transfer request to the memory by raising
ReadReq and Burst_Request and putting the address on the Date lines.

1. When memory sees the ReadReq and BurstReq lines, it reads the address of the
start of the 16-word block and raises Ack to indicate it has been seen.

2. I/O device sees the Ack line high and releases the ReadReq and Data lines, but
it keeps BurstReq raised.

3. Memory sees that ReadReq is low and drops the Ack line to acknowledge the
ReadReq signal.

4. This step starts when BurstReq is high, the Ack line is low, and the memory has
the next four data words ready. Memory places the next four data words in
answer to the read request on the Data lines and raises DataRdy.

5. The I/O device sees DataRdy, reads the data from the bus, and signals that it
has the data by raising Ack.

6. The memory sees the Ack signal, drops DataRdy, and releases the Data lines.

7. After the I/O device sees DataRdy go low, it drops the Ack line but continues to
assert BurstReq if more data remains to be sent to signal that it is ready for the
next four words. Step 4 will be next if BurstReq is high.

8. If the last four words of the 16-word block have been sent, the I/O device drops
BurstReq, which indicates that the burst transmission is complete.

With handshakes taking 20 ns and memory access taking 60 ns, a burst transfer will be
of the following durations:
Step 1 20 ns (memory receives the address at the end of this step; data goes on the bus

at the beginning of step 5).
Steps 2, 3, 4 Maximum (3 ´ 20 ns, 60 ns) = 60 ns.
Steps 5, 6, 7, 4 Maximum (4 ´ 20 ns, 60 ns) = 80 ns (looping to read and then send the

next four words; memory read latency completely hidden by handshaking
time).

Steps 5, 6, 7, 4 Maximum (4 ´ 20 ns, 60 ns) = 80 ns (looping to read and then send the
next four words; memory read latency completely hidden by handshaking
time).

Steps 5, 6, 7, 4 Maximum (4 ´ 20 ns, 60 ns) = 80 ns (looping to read and then send the
next four words; memory read latency completely hidden by handshaking
time).

End of burst transfer.

Thus, the total time to perform the transfer is 320 ns, and the maximum bandwidth is

(16 words ´ 4 bytes)/320 ns = 200 MB/sec.

It is a bit difficult to compare this result to that in the example on page 665 because the
example uses memory with a 200-ns access instead of 60 ns. If the slower memory
were used with the asynchronous bus, then the total time for the burst transfer would
increase to 820 ns, and the bandwidth would be

(16 words ´ 4 bytes)/820 ns = 78 MB/sec.

Part II: Solutions Guide 127

The synchronous bus in the example on page 665 needs 57 bus cycles at 5 ns per cycle
to move a 16-word block. This is 285 ns, for a bandwidth of

(16 words ´ 4 bytes)/285 ns = 225 MB/sec.

8.17 The new read size results in a maximum I/O rate of the bus = (100 ´ 106)/(4 ´
103) = 25,000 I/Os per second. In this situation, the CPU is now the bottleneck and we
can configure the rest of the system to perform at the level dictated by the CPU of 2000
I/Os per second. Time per I/O at disk now becomes 10.8 ms, which means each disk
can complete 1000/10.8 = 92.6 I/Os per second. To saturate the CPU requires 2000 I/Os
per second or 22 disks, which will require four controllers.

8.18 First, check that neither the memory nor the I/O bus is a bottleneck. Sustainable
bandwidth into memory is 4 bytes per 2 clocks = 400 MB/sec. The I/O bus can sustain
10 MB/sec. Both of these are faster than the disk bandwidth of 5 MB/sec, so when the
disk transfer is in progress there will be negligible additional time needed to pass the
data through the I/O bus and to write it into the memory. Thus we ignore this time and
focus on the time needed by the DMA controller and the disk. This will take 1 ms to
initiate, 12 ms to seek, 16 KB/5 MB = 3.2 ms to transfer: total = 16.2 ms.

8.19 The processor-memory bus takes 8 cycles to accept 4 words, or 2 bytes/clock
cycle. This is a bandwidth of 400 MB/sec. Thus we need 400/5 = 80 disks, and because
all 80 are transmitting, we need 400/10 = 40 I/O buses.

8.20 We can’t saturate the memory (we’d need 32 more disks and 34 more I/O buses).
At most 12 disks can transfer at a time, because we have 6 I/O buses and the I/O bus
is at 10 MB/sec and the disks at 5 MB/sec. Another limitation is the seek and rotational
latency. For this size transfer, the overhead time is 13 ms (1 + 12) and the transfer time
is 4 KB/5 MB = .8 ms. Thus the disks are actually spending most of their time finding
the data, not transferring it. So each disk is only transferring .8/13.8 = 5.8% of the time.
Every I/O is serving 8 disks but is not saturated, because the 8 disks act like .46 (less
than one disk) constantly transferring. A disk constantly transferring can perform 5
MB/ 4 KB = 1250 transfers each second. Thus the maximum I/O rate is 6 (controllers)
´ .46 disks ´ 1250 = 3450 I/Os per second. This is an I/O bandwidth of roughly 3450 ́
4 KB = 13.8 MB/sec.

8.21 To saturate an I/O bus we need to have 2 simultaneous transfers from 8 disks.
This means that 2 = 8 ´ (T/(13+T)) where T is the transfer time. So, T = 4.33 ms. This
corresponds to 21.67-KB reads, so the blocks must be 32 KB. A disk constantly transfer-
ring can perform 5 MB/ 32 KB = 156.25 transfers each second. With this block size we
can perform 2 transfers per I/O bus for a total of 312.5 transfers per bus per second. We
have 6 buses, so we can perform 1875 transfers per second. This is a bandwidth of 32
KB ´ 1875 = 60 MB/sec.

8.22 How many cycles to read or write 8 words? Using the current example (64-bit
bus with 128-bit memory bus, 1 + 40 + 2 ´ (2+2) = 49 cycles. The average miss penalty
is .4 ´ 49 + 49 = 68.6 cycles. Miss cycles per instruction = 68.6 ́ .005 = 3.43. If we up the
block size to 16, we get 57 cycles for 16 words, which makes 79.8 ́ .03 = 2.39 miss cycles
per instruction.

8.23 Some simplifying assumptions are

■ a fixed overhead for initiating and ending the DMA in units of clock cycles. This
ignores memory hierarchy misses adding to the time.

■ disk transfers take the same time as the time for the average size transfer, but the
average transfer size may not well represent the distribution of actual transfer
sizes.

■ real disks will not be transferring 100% of the time; far from it.

128 Instructors Manual for Computer Organization and Design

8.24 No solution provided.

8.25 No solution provided.

8.26 No solution provided.

8.27 No solution provided.

8.28 No solution provided.

8.29 Each disk access requires 1 ms of overhead + 6 ms of seek.

For the 4-KB access (4 sectors):

■ Single disk requires 4.17 ms + 0.52 ms (access time) + 7 ms = 11.7 ms.

■ Disk array requires 4.17 ms + 0.13 ms (access time) + 7 ms = 11.3 ms.

For the 16-KB access (16 sectors):

■ Single disk requires 4.17 ms + 2.08 ms (access time) + 7 ms = 13.25 ms.

■ Disk array requires 4.17 ms + 0.52 ms (access time) + 7 ms = 11.7 ms.

Here are the total times and throughput in I/Os per second:

■ Single disk requires (11.7+13.25)/2 = 12.48 ms and can do 80.2 I/Os per second.

■ Disk array requires (11.3+11.7)/2 = 11.5 ms and can do 87.0 I/Os per second.

For the solution to the challenge: The actual average rotational latency if we assume
that the disk head becomes ready to read from a track at a random location on that
track is as follows.

For 1-sector reads (done by the disk array when reading a 4-KB block), there is a 1/64
chance that the disk head lands in the sector to read. The disk head must wait on aver-
age for the disk to rotate 63.5/64 of a complete rotation to reach the start of the sector.
There is a 63/64 chance that the head starts in a sector other than the one to read and
must wait the rotational distance to the start of the sector to read, which is the number
of whole sectors between the start point and the sector to read (ranges from 0 to 62)
plus, on average, one half of the sector where the head started. So the average rota-
tional latency in number of sectors when reading 1 KB is

(63.5 + 1953 + 31.5) = 32 sectors.

The time to rotate past one sector is 60/7200 ´ 64 = 0.13 ms, so the actual average
latency is 32 ´ 0.13 = 4.16 ms.

For 4-sector reads (single disk reading 4 KB and disk array reading 16 KB) there is a
1/16 chance of starting within the 4 KB of sequential data, which requires a full rota-
tional latency plus on average half of a sector (1/8 of the 4-sector region) to complete.
(Note that sectors comprising the 4 KB may be read out of order, but we assume that
partial sectors do not contribute to the 4-sector read, i.e., reading starts at the first sec-
tor boundary encountered.) There is a 15/16 chance of starting in a sector outside of
the read area, and the latency then is the whole number of sectors between the head
start position and the consecutive sectors to read (ranging from 0 to 14), plus one half
on average of a 4-sector segment. Thus,

(1 + 0.125 + 105 + 7.5) = 7.1 4-sector segments.

63.5
64

---------- 1
64
------ i 0.5+()

i 0=

62

å 1
64
------=+

1
16
------ 1 1

8
---+è ø

æ ö 1
16
------ i 0.5+()

i 0=

14

å+ 1
16
------=

Part II: Solutions Guide 129

The time to rotate past a 4-sector segment is 60/7200 ́ 16 = 0.52 ms, so the actual aver-
age latency is 7.1 ´ 0.52 = 3.69 ms.

For 16-sector reads (single disk reading 16 KB) we have, by similar reasoning to the 4-
sector read case,

(1 + 0.03125 + 3 + 1.5) = 1.383 16-sector segments.

The time to rotate past a 16-sector segment is 60/7200 ́ 4 = 2.08 ms, so the actual aver-
age latency is 1.383 ´ 2.08 = 2.88 ms.

The rotational latency decreases as the area to be read occupies more of the track, pro-
vided the sectors can be read out of order. Reordering the sector data once it is read
can be readily and rapidly accomplished by appropriate disk controller electronics.

8.30 The average read is (4 + 16)/2 = 10 KB. Thus, the bandwidths are

Single disk: 80.2 ´ 10 KB = 802 KB/second.

Disk array: 87.0 ´ 10 KB = 870 KB/second.

1
4
--- 1 1

32
------+è ø

æ ö 1
4
--- i 0.5+()

i 0=

2

å+ 1
4
---=

130 Instructors Manual for Computer Organization and Design

9.1 No solution provided.

9.2 The short answer is that x is obviously always a 1, and y can either be 1, 2, or 3. In
a load-store architecture the code might look like the following:

Processor 1 Processor 2

load X into a register load X into a register
increment register increment register
store register back to X store register back to Y
load Y into a register
add two registers to register
store register back to Y

For considering the possible interleavings, only the loads/stores are really of interest.
There are four activities of interest in process 1 and two in process 2. There are 15 pos-
sible interleavings, which result in the following:

111122: x = 1, y = 2

111212: x = 1, y = 2

111221: x = 1, y = 1

112112: x = 1, y = 2

112121: x = 1, y = 1

112211: x = 1, y = 3

121112: x = 1, y = 1

121121: x = 1, y = 1

121211: x = 1, y = 2

122111: x = 1, y = 2

211112: x = 1, y = 1

211121: x = 1, y = 1

211211: x = 1, y = 2

212111: x = 1, y = 2

221111: x = 1, y = 2

9.3 No solution provided.

9.4 No solution provided.

9.5 Write-back cache with write-update cache coherency and one-word blocks. All
words in cache are initially clean. Assume four-byte words and byte addressing.

9 Solutions

Part II: Solutions Guide 131

Total bus transactions = 2.

9.6 Write-back cache with write-update cache coherency and four-word blocks. All
words in cache are initially clean. Assume four-byte words and byte addressing. As-
sume that the bus moves one word at a time. Addresses 100 and 104 are contained in
the one block starting at address 96.

Total bus transactions = 12.

9.7 No solution provided.

9.8 No solution provided.

9.9 No solution provided.

9.10 No solution provided.

9.11 No solution provided.

9.12 No solution provided.

9.13 No solution provided.

9.14 No solution provided.

Step Action Comment

1 P1 writes 100 One bus transfer to move the word at 100 from P1 to P2 cache; no transfer from
P2 cache to main memory because all blocks are clean.

2 P2 writes 104 One bus transfer to move the word at 104 from P2 to P1 cache; no transfer from
P1 cache to main memory because the transferred block maps to a clean location
in P1 cache.

3 P1 reads 100 No bus transfer; word read from P1 cache.

4 P2 reads 104 No bus transfer; word read from P2 cache.

Step Action Comment

1 P1 writes 100 Four bus transfers to move the block at 96, which contains the word at 100 from
P1 to P2 cache; no transfer from P2 cache to main memory because all P2 cache
blocks are clean; however, the P1 cache block holding 100 is now dirty.

2 P2 writes 104 Eight bus transfers to move the block at 96, which contains the word at 104, from
P2 to P1 cache, and to move the dirty block in P1 cache to main memory.

3 P1 reads 100 No bus transfer; P1 cache has current value.

4 P2 reads 104 No bus transfer; P2 cache has current value.

132 Instructors Manual for Computer Organization and Design

A.1 No solution provided.

A.2 No solution provided.

A.3 No solution provided.

A.4 No solution provided.

A.5 No solution provided.

A.6

main:
li $a0, 0

loop:
li $v0, 5
syscall
add $a0, $a0, $v0
bne $v0, $zero, loop
li $v0, 1
syscall
li $v0, 10
syscall

A.7

main:
li $v0, 5
syscall
move $a0, $v0
li $v0, 5
syscall
move $a1, $v0
li $v0, 5
syscall
move $a2, $v0
slt $t0, $a0, $a1
bne $t0, $zero, a0_or_a2_smallest
slt $t0, $a1, $a2
bne $t0, $zero, a1_smallest

a2_smallest:
add $a0, $a0, $a1
j print_it

a1_smallest:
add $a0, $a0, $a2
j print_it

a0_or_a2_smallest:
slt $t0, $a0, $a2
beq $t0, $zero, a2_smallest
add $a0, $a2, $a1

print_it:

A Solutions

Part II: Solutions Guide 133

li $v0, 1
syscall
li $v0, 10

syscall

A.8 We start by prompting for an integer and validating the input. Once the integer is
in a register, we repeatedly (and successively) divide it by 10, keeping the remainders
in an array. These remainders are nothing but the integer’s digits, right to left. We then
read these digits left to right and use each as an index into the “names” array and out-
put the corresponding names. To that end, we either fix the length of the elements of
the “name” array, or we keep them variable and define a second array of pointers
whose elements are the addresses of the names and are, thus, of fixed length (an ad-
dress is always 4 bytes). We choose the former approach:

.data
msg: .asciiz "Invalid Entry\n"
prompt: .asciiz "Enter a positive integer ... "
names: .asciiz "Zero "

.space 1

.asciiz "One "

.space 2

.asciiz "Two "

.space 2

.asciiz "Three "

.asciiz "Four "

.space 1

.asciiz "Five "

.space 1

.asciiz "Six "

.space 2

.asciiz "Seven "

.asciiz "Eight "

.asciiz "Nine "

.space 1
digits: .space 10

.globl main

.text
#-------------------------- Push the ret. address

main: sw $ra, 0($sp)
addi $sp, $sp, –4
#-------------------------- Print a prompt
addi $v0, $zero, 4
addi $a0, $zero, prompt
syscall
#-------------------------- Input an integer into v0
addi $v0, $zero, 5
syscall
#-------------------------- Reject if non positive
bgtz $v0, cont
addi $v0, $zero, 4
addi $a0, $zero, msg
syscall
j fini

134 Instructors Manual for Computer Organization and Design

cont: #-------------------------- Extract its digits (right-
to-left)
addi $a0, $zero, 10
addi $t0, $zero, 0

again: div $v0, $a0
mflo $v0 # v0 = v0 div 10
mfhi $t1 # t1 = v0 mod 10
sb $t1, digits($t0)
beq $v0, $zero, abort # leave if v0 became 0
beq $t0, $a0, abort # or if 10 digits were extracted
addi $t0, $t0, 1
j again

abort: #------------------------- Print their names
addi $t7, $zero, 7 # t7 = 7
lb $t5, digits($t0)
beq $t5, $zero, skip # skip leading zero

next: mult $t5, $t7
mflo $t5 # t5 = the name's offset
addi $a0, $t5, names # a0 = the name's address
addi $v0, $zero, 4
syscall

skip: sub $t0, $t0, 1
bltz $t0, fini
lb $t5, digits($t0)
j next
#-------------------------- Pop the stack; ret to SPIM

fini: addi $sp, $sp, 4
lw $ra, 0($sp)
jr $ra

A.9 No solution provided.

A.10

main:
addiu $sp, $sp, –4
sw $ra, 4($sp)
li $v0, 4
.data

S1: .asciiz "Enter number of disks "
.text
la $a0, S1
syscall
li $v0, 5
syscall
move $a0, $v0
li $a1, 1
li $a2, 2
li $a3, 3
jal hanoi
li $v0, 0

Part II: Solutions Guide 135

lw $ra,4($sp)
addiu $sp, $sp, 4
jr $ra

hanoi:
beq $a0, $zero, baseCase
addiu $sp, $sp, –20
sw $a0, 4($sp)
sw $a1, 8($sp)
sw $a2, 12($sp)
sw $a3, 16($sp)
sw $ra, 20($sp)
addi $a0, $a0, –1
move $t0, $a3
move $a3, $a2
move $a2, $t0
jal hanoi
li $v0, 4
.data

S2: .asciiz "Move disk "
.text
la $a0, S2
syscall
li $v0, 1
lw $a0, 4($sp)
syscall
li $v0, 4
.data

S3: .asciiz " from peg "
.text
la $a0, S3
syscall
li $v0, 1
lw $a0, 8($sp)
syscall
li $v0, 4
.data

S4: .asciiz " to peg "
.text
la $a0, S4
syscall
li $v0, 1
lw $a0, 12($sp)
syscall
li $v0, 4
.data

S5: .asciiz ".\n"
.text
la $a0, S5
syscall
lw $a0, 4($sp)
addi $a0, $a0, -1

136 Instructors Manual for Computer Organization and Design

lw $a1, 16($sp)
lw $a2, 12($sp)
lw $a3, 8($sp)
jal hanoi
lw $ra, 20($sp)
addiu $sp, $sp, 20
jr $ra

baseCase:
jr $ra

Part II: Solutions Guide 137

B.1 This is easily shown by induction.

Base case: A truth table with one input clearly has two entries (21).

Assume a truth table with n inputs has 2n entries.

A truth table with n + 1 entries has 2n entries where the n + 1 input is 0 and 2n entries
where the n + 1 input is 1, for a total of 2n+1 entries.

B.2 No solution provided.

B.3

B.4 NOT function: = so

AND function: = so

OR function: = = A + B so

B Solutions

A

0

B

A

0

0

A

B

0

A

A + B

A B•

1 • A A
A

1
A

A • B A • B
B

A

1
A B•

A • B A • B 1

A

1

B
A + B

138 Instructors Manual for Computer Organization and Design

B.5

B.6

B.7 Here is the first equation:

.

Now use DeMorgan’s law to rewrite the last factor:

Now distribute the last factor:

Now distribute within each term; we show one example:

(This is simply .) Thus, the equation above becomes

, which is the desired result.

B.8 Generalizing DeMorgan’s theorems for this exercise, if = , then

= = = = .

Similarly,

= = = = .

A B A B A + B A · B A · B A + B

0 0 1 1 1 1 1 1

0 1 1 0 0 0 1 1

1 0 0 1 0 0 1 1

1 1 0 0 0 0 0 0

0

B

A • B
M
u
x

A

A + B

A

1

0

A

M
u
x

M
u
x

A

B

1

0

0

0

1

1

1

E A B×() A C×() B C×()+ +() A B C× ×()×=

E A B×() A C×() B C×()+ +() A B C+ +()×=

E A B×() A B C+ +()×() A C×() A B C+ +()×() B C×() A B C+ +()×()+ +=

A B×() A B C+ +()×() A B A× ×() A B B× ×() A B C× ×()+ + 0 0 A B C× ×()+ += =

A B C× ×

E A B C× ×() A B C× ×() A B C× ×()+ +=

A B+ A B×

A B C+ + A B C+()+ A B C+()× A B C×()× A B C× ×

A B C× × A B C×()× A + B C× A B + C()× A + B + C

Part II: Solutions Guide 139

Intuitively, DeMorgan’s theorems say that (1) the negation of a sum-of-products form
equals the product of the negated sums, and (2) the negation of a product-of-sums
form equals the sum of the negated products. So,

E =

=

= ; first application of DeMorgan’s theorem

= ; second application of DeMorgan’s
theorem and product-of-sums form

B.9 No solution provided.

B.10

■

■

■

■

B.11 No solution provided.

B.12

■

■

■

B.13

B.14 Two multiplexors, control is S, output of one is C (S = 0 selects B, S = 1 selects A)
and the other is D (S = 0 selects A, S = 1 selects B).

Inputs Output

A B S C

0 X 0 0

1 X 0 1

X 0 1 0

X 1 1 1

E

A B C× ×() A C B× ×() B C A× ×()+ +

A B C× ×() A C B× ×() B C A× ×()× ×

A B C+ +() A C B+ +() B C A+ +()× ×

x0x1x2 x0x1x2 x0x1x2+ +

x0x1x2 x0x1x2 x0x1x2 x0x1x2+ + +

x2 x1 x0+()

x2 x1 x0+()

x2y2 x2y2x1y1 x2y2x1y1x0y0+ +

x2y2 x2y2x1y1 x2y2x1y1x0y0+ +

x2y2 x2y2+() x1y1 x1y1+() x0y0 x0y0+()

140 Instructors Manual for Computer Organization and Design

B.15–17

B.18 The first is the flip-flop (it changes only when the clock just went from low to
high) and the second is a latch.

B.19 There will be no difference as long as D never changes when C is asserted (with
respect to the D latch).

B.20 The key is that there are two multiplexors needed and four D flip-flops (should
provide diagram).

B.21 The point here is that there are two states with the same output (the middle light
on) because the next light is either the left or the right one. This example demonstrates
that outputs and states are different.

B.22 No solution provided.

B.23 The basic idea is to build a single bit that toggles first. Then build the counter by
cascading these 1-bit counters using the output of each stage to cause the toggle of the
next; we assume that both inc and reset are not high at the same time. This circuit
assumes falling-edge triggered D flip-flops.

A B C D Output

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

1 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

M
u
x

0

10

C

D Q
M
u
x

0

10

C

D Q
M
u
x

0

10

C

D Q

reset
inc

reset reset

Bit 0 Bit 2Bit 1

Part II: Solutions Guide 141

B.24 No solution provided.

B.25 We assume that the light changes only if a car has arrived from the opposite di-
rection and the 30-second timer has expired. Here is the FSM. We make a small simpli-
fication and actually make the light cycle in 34-second increments. This could be
improved by detecting a car and the timer expiration at the same time, but this still
means that when a car arrives it may still take up to 4 seconds before the yellow light
is signaled.

B.26 No solution provided.

B.27 No solution provided.

B.28 No solution provided.

NSgreen

NSyellow

TimerReset

Timersignal

EWgreen

EWyellow

TimerReset

NScar

Timersignal

Timersignal

Timersignal

EWcar

EWcar

NScar

142 Instructors Manual for Computer Organization and Design

C.1 No solution provided.

C.2 See the solution to Exercise 5.6 and see Figure C.5, which shows a PLA implement-
ing much of the control function logic for a single-cycle MIPS. The instruction jal
changes the PC and stores PC+4 in register $ra (register 31). The Jump control signal
manages the correct change to PC. The two-input multiplexors controlled by RegDst
and MemToReg can be expanded to include $ra and PC+4, respectively, as inputs. Be-
cause jal does not use the ALU, all ALU-related controls (ALUSrc and ALUOp) can
be don’t cares, so no product terms are needed. The existing Branch, MemRead, and
MemWrite controls must be properly set.

Looking at Figure C.5, the R-format, lw, sw, and beq product terms are needed to gen-
erate the control signals:

RegDst (now must be 2 bits to control the mux with inputs Rt, Rd, and new input
$ra (31) in Figure 5.29)
MemToReg (now must be 2 bits to control the mux with inputs Read data, ALU
result, and new input PC+4 in Figure 5.29)
MemRead (= 0)
MemWrite (= 0)
Branch (= 0)

To generate the control signal Jump (controls the upper right multiplexor in Figure
5.29), a new minterm is needed. This new minterm will also be sufficient to generate
the additional bit for both the RegDst and MemToReg control signals.

Thus, five minterms (R-format, lw, sw, beq, and jump) are needed.

C.3 See the solution to Exercise 5.5. The control signals RegDst, ALUSrc, ALUOp (2
bits), MemToReg, RegWrite, Branch, MemRead, and MemWrite must all be set appro-
priately. From Figure C.5 all four product terms R-format, lw, sw, and beq are used to
generate these nine control signals.

C.4 No solution provided.

C.5 No solution provided.

C.6 No solution provided.

C.7 No solution provided.

C Solutions

