
TJS final – 1 – 10/30/92

The Multiflow Trace Scheduling Compiler

P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes,

W. D. Lichtenstein, Robert P. Nix, John S. O’Donnell, John C. Ruttenberg

(Formerly of) Multiflow Computer1

10/30/92

The Multiflow compiler uses the trace scheduling algorithm to find and
exploit instruction-level parallelism beyond basic blocks.  The compiler
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1  Introduction

For the last 30 years, declining hardware costs have encouraged computer scientists and engineers to seek
increased performance through parallelism.  In the area of single-CPU performance, this search yielded
high-performance computers as early as 1964 [67, 70] that performed on-the-fly data precedence analysis to keep
multiple functional units busy.  Great interest has been focused on the upper limits of parallelism within existing
software.  Studies now 20 years old [69, 29], confirmed by later work [38], show that only small benefits are
available when parallelism is sought within basic blocks.

This limitation is troublesome for scientific programs, where regularity and operation independence is intuitively
obvious, and where CPU performance is critical.  Because no practical technique for scheduling individual
operations from beyond basic blocks was known, data-parallel operations (vector instructions) were added to
scientific computers.  Compiler techniques were developed for recognizing vector opportunities in loop-based
patterns of operations [7, 8, 43, 5].  These techniques, now known as vectorization, suffered from limitations in
their applicability [49].

In 1979 Fisher [26] described an algorithm called trace scheduling, which proved to be the basis for a practical,
generally applicable technique for extracting and scheduling parallelism from beyond basic blocks [28, 53].  The
work of Fisher’s group at Yale, particularly that of Ellis [23], showed that large potential speedups from
parallelism were available on a wider range of applications than were amenable to vectorization.  Multiflow
Computer, Inc. was founded in 1984 to build on this line of research, and to develop processors similar to those
envisioned in the Yale research: VLIW machines that could execute many operations at once.  An overview of the
machines is provided here; for detailed discussion see [19, 20, 39].  Multiflow closed its doors in March, 1990. 
This paper reports on the compiler developed at Multiflow from 1984 to 1990.

The Multiflow compilers are the key component of computer systems that utilize instruction-level parallelism on a
larger scale than ever before attempted.  Parallelism is achieved on a wider range of applications than vectorization
can handle.  Furthermore, this parallelism is achieved with relatively simple hardware; most of the complexities
attendant upon identifying and scheduling operation ordering is handled in software, while hardware simply carries
out pre-determined schedules.

The techniques developed in the Multiflow compiler will be very applicable to future generations of RISC
processors, which will integrate many functional units on a single chip.

1.1  Trace Scheduling Overview

The trace scheduling algorithm permits instruction scheduling beyond basic blocks (Figure 1-1).  It provides a
framework for a unified approach to the scheduling of simple loops, loops with conditionals, and loop-free
stretches of code.  Multiflow demonstrated that it was possible to have a single instruction-scheduling strategy that
yielded many of the benefits of more complex approaches to loop scheduling [60, 44, 45, 2].  The algorithm allows
a natural separation between global and local correctness issues.  This leads to a compiler structure which closely
resembles that of a traditional, basic-block scheduling compiler, with the addition of a trace scheduling module.

A summary description of the basic algorithm follows; much more detail is presented later in the paper.
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Figure 1-1: Code scheduling across basic block boundaries

After all intermediate optimization has been done, and all operations have been expanded to machine-level opcode
sequences, the flow graph of operations is passed to the trace scheduler (TS).  It first annotates the graph with
expected execution frequencies.  These are generated by linear combination of branch probabilities and loop trip
counts, obtained either from heuristics or from measurements of prior runs of the application.  The TS then enters
the following loop:

  A. Select a sequence of operations to be scheduled together (Figure 1-2).  This sequence is called a trace.  Traces
are limited in length by several kinds of boundaries; the most significant ones are module boundaries
(entry/return), loop boundaries (no trace includes operations within and without a given loop), and previously
scheduled code.

  B. Remove the trace from the flow graph, passing it to the instruction scheduler (called the code generator in
Bulldog [23]).

  C. When the instruction scheduler returns the finished schedule for the trace, place the schedule in the flow
graph, replacing the operations originally in the trace (Figure 1-3).  At schedule boundaries other than the
main entry and exit, correct logical inconsistencies which arise from operations moving above and below
splits and above joins.  This can require generating copies of some of the operations scheduled on the trace
(see Figure 1-4).

  D. Loop, until all operations have been included in some trace and all traces have been replaced by schedules
(Figure 1-5).

  E. Select the best linear order for the object code and emit it.
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Figure 1-2: Select a trace and schedule code within the trace

Figure 1-3: Replace the trace with the scheduled code and analyze state at split and
join points
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Figure 1-4: Generate compensation code to resolve split and join state differences

Figure 1-5: Iterate, selecting each trace based on successive priority

The task of the Instruction Scheduler (IS) within this framework is as follows.  The IS receives one trace at each
invocation.  It builds a data precedence graph (DPG) to represent data precedence constraints on execution order
and adds various heuristic edges to the DPG to further constrain the schedule.  The entire scheduling problem
which the IS must solve is incorporated in the DPG, which can represent a single basic block, a sequence of basic
blocks with complicated conditionals, or the (possibly unrolled) body of a loop.  Special handling for a particular
kind of code is effected by adding heuristic edges to the DPG.

if..then
if..then

if..then
if..then

2nd Trace

1st Trace
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The scheduler attempts to build the fastest possible sequence of instructions for the DPG.  Operations are
frequently moved past one or more splits or joins to issue them "greedily" or "speculatively", in order to shorten
the length of the expected execution path.

This simple picture is complicated somewhat by register allocation and the management of machine resources in
use across multiple execution paths.  These issues are discussed in sections 9 and 10.

2  Outline

In the following section we present an overview of the Multiflow Trace machines.  Section 4 gives some history of
the compiler, and section 5 describes its structure.  We then describe the phases of the compiler: the front end in
section 6, the optimizer in section 7 and the back end in section 8.  To present the back end in more detail, we
describe the trace scheduler in section 9, the instruction scheduler in section 10, the machine model in section 11,
the calling sequence in section 12, and the disambiguator in section 13.  We evaluate the performance of the
compiler in sections 14 and 15 and close with some retrospective conclusions in section 16.

3  The Trace machines

3.1  Basics

All Multiflow computers share a set of common architectural features.  They are all VLIWs; they encode many
operations in a single long instruction.  Operations are RISC-like: fixed 32-bit length, fixed-format, three register
operations with memory accessed only through explicit loads and stores.  Operations are either completed in a
single cycle or explicitly pipelined; pipelines are self-draining.  The machines are not scoreboarded and machine
resources can be oversubscribed.  The memory system is interleaved.  The compiler must avoid register conflicts,
schedule the machine resources, and manage the memory system.

There are three series of Multiflow machines, eight models in all.

• The 200 series, which first shipped in January, 1987.  It is implemented in CMOS Gate arrays and TTL logic
with Weitek CMOS floating point chips.  It has a 65ns cycle time.

• The 300 series, which first shipped in July, 1988.  This is a 10%-redesign of the 200 with Bipolar Integrated
Technologies (BIT) ECL floating point parts.  The cycle time remained at 65ns.

• The 500 series.  This is an ECL semi-custom implementation that was fully designed but not completely
fabricated or tested when the company closed in March, 1990.  It  targeted a 15ns cycle time.

The 200 and 300 series come in three widths: a 7-wide, which has a 256-bit instruction issuing 7 operations; a
14-wide with a 512-bit instruction; and a 28-wide with a 1024-bit instruction.  The 500 was designed in only
14-wide and 28-wide versions.  The wider processors are organized as multiple copies of the 7-wide functional
units; we call the 7-wide group of functional units a cluster.  For most of the paper, we will focus on the 300 series. 
Figure 3-1 shows a 7/300, and Figure 3-2 shows a 28/300. 
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Figure 3-1: The Multiflow TRACE 7/300
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Figure 3-2: The Multiflow TRACE 28/300

In the 300 series, instructions are issued every 130ns; there are two 65ns beats per instruction.  Integer operations
can issue in the early and late beats of an instruction; floating point operations issue only in the early beat.  Most
integer ALU operations complete in a single beat.  The load pipeline is 7 beats.  The floating point pipelines are 4
beats.  Branches issue in the early beat and the branch target is reached on the following instruction, effectively a
two beat pipeline. An instruction can issue multiple branch operations (4 on the 28/300); the particular branch
taken is determined by the precedence encoded in the long instruction word.

• There are 4 functional units per cluster: two integer units and two floating units.  In addition, each cluster can
contribute a branch target.  Since the integer units issue in both the early and the late beat, a cluster has the
resources to issue 7 operations for each instruction.
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• There are 9 register files per cluster (36 register files in the 28/300).  See Figure 3-3.  Data going to memory
must first be moved to a store file.  Branch banks are used to control conditional branches and the select
operation.

Register-File Type Number Elements Size
Integer 2 32 32
Floating 2 16 64
Store 1 16 64
Integer branch 2 6 1
Floating branch 2 1 1

Figure 3-3: Register files per cluster

• The instruction cache holds 8K instructions (1Mb for the 28/300).  There is no data cache.

• The memory system supports 512 Mb of physical memory with up to 64 way interleaving.  There is a 4Gb
virtual address space.

• There are two IO processors.  Each supports a 246 Mb/sec DMA channel to main memory and two 20 Mb/s
VME busses.

Figure 3-4 presents the basic performance figures for the 300 series.

7/300 14/300 28/300
MOPs 53 107 215
Mflops 30 60 120
Main memory Mb/s 123 246 492
Linpack 1000x1000 23 42 70
Linpack 100x100 11 17 22
SPECmark NA 23 25
Sustainable ops-in-flight 10-13 20-26 40-52

Figure 3-4: Hardware performance of the TRACE 300 family

Figure 3-5 shows two instructions of 14/300 code, extracted from the inner loop of the 100x100 Linpack
benchmark.  Each operation is listed on a separate line.  The first two fields identify the cluster and the functional
unit to perform the operation, the remainder of the line describes the operation.  Note the destination address is
qualified with a register-bank name (e.g., sb1.r0); the ALUs could target any register bank in the machine (with
some restrictions).  There is extra latency in reaching a remote bank.

instr cl0 ialu0e st.64 sb1.r0,r2,17#144
cl0 ialu1e cgt.s32 li1bb.r4,r34,6#31 
cl0 falu0e add.f64 lsb.r4,r8,r0 
cl0 falu1e add.f64 lsb.r6,r40,r32 
cl0 ialu0l dld.64 fb1.r4,r2,17#208 
cl1 ialu0e dld.64 fb1.r34,r1,17#216 
cl1 ialu1e cgt.s32 li1bb.r3,r32,zero 
cl1 falu0e add.f64 lsb.r4,r8,r6 
cl1 falu1e add.f64 lsb.r6,r40,r38 
cl1 ialu0l st.64 sb1.r2,r1,17#152 
cl1 ialu1l add.u32 lib.r32,r36,6#32 
cl1 br true and r3 L23?3 
cl0 br false or r4 L24?3; 

instr cl0 ialu0e dld.64 fb0.r0,r2,17#224 
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cl0 ialu1e cgt.s32 li1bb.r3,r34,6#30 
cl0 falu0e mpy.f64 lfb.r10,r2,r10 
cl0 falu1e mpy.f64 lfb.r42,r34,r42 
cl0 ialu0l st.64 sb0.r4,r2,17#160 
cl1 ialu0e dld.64 fb0.r32,r1,17#232 
cl1 ialu1e cgt.s32 li1bb.r4,r35,6#29 
cl1 falu0e mpy.f64 lfb.r10,r0,r10 
cl1 falu1e mpy.f64 lfb.r42,r32,r42 
cl1 ialu0l st.64 sb0.r6,r1,17#168 
cl1 ialu1l bor.32 ib0.r32,zero,r32 
cl1 br false or r4 L25?3 
cl0 br true and r3 L26?3;

Figure 3-5: TRACE 14/300 Code Fragment

3.2  Data types

The natural data types of the machine are 32-bit signed and unsigned integers, 32-bit pointers, 32-bit IEEE-format
single precision, and 64-bit IEEE-format double precision.  16-bit integers and characters are supported with
extract and merge operations; bit strings with shifts and bitwise logicals; long integers by an add with carry; and
booleans with normalized logicals.  There is no support for extended IEEE precision, denormalized numbers, or
gradual underflow.

Accesses to memory return 32 or 64 bits.  Natural alignment is required for high performance: 0 mod 4 for 32 bit
references; 0 mod 8 for 64 bit.  Misaligned references are supported through trap code, with a substantial
performance penalty.

Memory is byte addressed.  Using byte addresses eases the porting of C programs from byte addressed processors
such as the VAX and 68000.  The low bits of the address are ignored in a load or a store, but are read by extract
and merge operations.  Accessing small integers is expensive.  Each load of a character requires a ld.8/ext.s8
sequence, and each store requires a ld.8/mrg.s8/st.8 sequence.  Figure 3-6 shows the schedule generated for two
character copies.

void copy2(a,b) 
char *a, *b; 
{

a[0] = b[0];
a[1] = b[1];

}

mark_trace 1; 
instr cl0 ialu0e ld.8 ib0.r32,r4,zero 

cl0 ialu0l sub.u32 lib.r0,r0,32#?2.1?2auto_size;
instr cl0 ialu0e bor.32 lib.r33,zero,r4 

cl0 ialu0l ld.8 ib0.r35,r3,zero
cl0 ialu1l add.u32 lib.r34,r33,6#1;

instr cl0 ialu0e bor.32 lib.r36,zero,r3
cl0 ialu1l add.u32 lib.r1,r36,6#1;

instr cl0 ialu1l ext.s8 lib.r32,r32,r33 
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cl0 gc mnop 2;
instr cl0 ialu1e mrg.s8 lsb.r0,r35,r32,r3

cl0 ialu0l st.8 sb0.r0,r3,zero;
instr cl0 ialu0e ld.8 ib0.r32,r4,6#1

cl0 ialu0l ld.8 ib0.r33,r3,6#1
cl0 gc mnop 4;

instr cl0 ialu1l ext.s8 lib.r32,r32,r34;
instr cl0 ialu1e mrg.s8 lsb.r0,r33,r32,r1

cl0 ialu0l st.8 sb0.r0,r3,6#1;
instr cl0 ialu0l add.u32 lib.r0,r0,32#?2.1?2auto_size

return;

Figure 3-6: Sequence for copying two characters

3.3  Memory system and data paths

The Multiflow Trace has a two level interleaved memory hierarchy exposed to the compiler.  All memory
references go directly to main memory; no data cache is present. There are 8 memory cards, each of which
contains 8 banks.  Each bank can hold 8Mb, for a total capacity of 512Mb.  Memory is interleaved across the cards
and then the banks.  The low byte of an address determines its bank: bits 0-1 are ignored, bits 2-4 select a card and
bits 5-7 select a bank.

Data is returned from memory on a set of global busses which are approximately shown in Figure 3-2.1  These
busses are shared with moves of data between clusters; to maintain full memory bandwidth on a 28/300 the number
and placement of data moves must be carefully planned.

Each level of interleaving has a potential conflict.

• Card/bus conflict.  Within a single beat, all references must be to distinct cards, and they must use distinct
busses.  If two references conflict on a card or a bus, the result is an undefined program error.

• Bank conflicts.  A memory bank is busy for 4 beats from the time it is accessed.  If another reference touches
the same bank within the 4-beat window, the entire machine stalls.  To achieve maximum performance, the
compiler must schedule successive references to distinct banks.

A 28/300 can generate 4 references per beat, and, if properly scheduled, the full memory bandwidth of the machine
can be sustained without stalling.  The 28/300 is asymmetric in that it can perform only 2 stores per beat; 2
compatible loads need to be paired with the 2 stores to achieve maximum bandwidth.

3.4  Global resources

In addition to functional units and register banks, the Trace machines have a number of global shared resources
that need to be managed by the compiler.

• Register file write ports.  Each integer and floating register file can accept at most 2 writes per beat, one of
which can come from a local ALU.  Each branch bank can accept 1 write per beat.  Each store file can accept
2 writes per beat.

• Global busses.  There are 10 global busses; each can hold a distinct 32-bit value each beat.  The hardware
contains routing logic; the compiler need only guarantee that the number of busses is not oversubscribed in a
beat.  (Actually the busses come in 4 types, and each type must be separately scheduled.)

• Global control.  There is one set of global controller resources, which control access to  link registers used for
subroutine calls and indirect branches.

1 For a more detailed presentation of the Trace memory system, see [19].
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3.5  Integer units

The integer units execute a set of traditional RISC operations.  There are a number of features added to support
trace scheduling:

• There are a set of dismissable load opcodes.  These opcodes set a  flag to the exception handler that indicates
that the load operation is being performed speculatively (see 3.8 below).

• All operations that compute booleans are invertible.  The trace scheduler prefers invertible branches, so that it
can layout a trace as straight-line code by inverting branch conditions as necessary.

• A 3-input, one output select operation (a = b ? c : d) is provided.  This permits many short forward branches
to be mapped into straight line code.

A conditional branch is a two operation sequence.  An operation targets a branch bank register, and then the branch
reads the register.  A conditional branch requires 3 beats, and, since the branch can only issue on an instruction
boundary, in sparse code it can require 4.  Having separate register files for the branch units relieves pressure on
the integer register files and provides additional operand bandwidth to support the simultaneous branch operations.

The two integer ALUs per cluster are asymmetric; only one can issue memory references.  This presented
problems for the instruction scheduler, as we discuss in section 10.

Due to limits on the size of our gate arrays, no integer ALUs shared a register file.  This fact, coupled with the low
latency of integer operations, makes it difficult for the instruction scheduler to exploit parallelism in integer code. 
The cost of moving data between register files often offsets the gains of parallelism.  Figure 3-7 shows how a
simple parallel integer sequence can be slower on two ALUs with separate register files than one ALU.  With a
single register file the parallelism can easily be exploited.

1 ALU 2 ALU 2 ALU
1 RF 1 RF 2 RF

0: cmp i>n 0: cmp i>n; i=i + 1 0: mov i  to other bank
1: i = i + 1 1: cmp i > n ; i = i + 1

2: mov i back

Figure 3-7: The multiple register file dilemma

3.6  Floating units

The floating units in the 300 series are the BIT ECL floating point parts.  There are two units per cluster, and each
can execute the same repertoire of floating operations.  Each also implements a full complement of integer
operations, but only the move and select operations are used by the compiler.

The floating units have relatively small register files; 15 64-bit registers per file are available to the compiler. All
pipelines on the Trace are self-draining; if an interrupt occurs the pipelines drain before the interrupt is serviced. 
This means that operations may complete earlier than determined by the compile-time schedule, so a subsequent
operation cannot target the destination register of an operation until the first operation is completed.  The load
latency is 7 beats, and the floating point latency is 4.  A load can issue every beat; a flop every other beat. Thus 9
distinct destination registers are required in each floating bank to keep the pipelines full.  This leaves only 6
registers per bank to hold variables, common subexpressions, and the results of operations that are not immediately
consumed.

There is no pipelined floating move.  A move between floating registers takes 1 beat and consumes a register
write-port resource.  This can prevent another floating point operation issued 3 beats earlier from using the same
write port; thus a floating move can in some situations lock out two floating point operations.  To address this, a
pipelined move operation was added to the 500 series.

The floating units can be used in two special modes: multiply-accumulate mode and pair mode.  In
multiply-accumulate mode, each operation can perform both a multiply and an add.  This mode was added late in
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the machine design, and because of some unusual constraints, it cannot be used by the compiler.  Pair mode, which
is supported by the compiler, allows each 64-bit register to be treated as a 2-element vector of single precision
operands.

3.7  Instruction encoding

The instruction encodings are large, especially for code that does not use all of the functional units.  To save space
in memory and on disk, object code is stored with NOP operations eliminated.  Instructions are grouped in blocks
of 4, and the non-NOP operations are stored with a preceding mask word that indicates which NOPs have been
eliminated.  When an instruction is loaded into the icache, it is expanded into its full width.

To save space in the icache, an instruction can encode a multi-beat NOP, which instructs the processor to stall for
the specified number of beats before executing the following instruction.

The large instruction format permits a generous number of immediate operands.  There is a full 32-bit word worth
of immediates for each cluster in each beat.  The word can be divided into 16-bit pieces to construct shorter offsets. 
In addition one of the two source register specifiers for each integer operation can be interpreted as a 6-bit
immediate.  The compiler uses immediates heavily.  Constants are never loaded from memory; they are
constructed from the instruction word.  Double precision constants are pieced together out of two immediate fields. 
The global pointer scheme used by most RISC machines[15] is not required.  However, due to the large number of
branches and memory references that can be packed into a single instruction, the immediate resource can be
oversubscribed.  Our unrollings are tuned to keep the offsets created from induction variable simplification small,
and, on the wide machine, care is taken to place the targets of loop exits so that they can be reached with a short
branch offset.

3.8  Trap code and timings

Trap hardware and trap code supports virtual memory, trapping on references to unmapped pages and stores to
write-protected pages.  To prevent unwarranted memory faults on speculative loads, the compiler uses the
dismissable load operation. If a dismissable load traps, the trap code does not signal an exception, but returns a
NAN or integer zero, and computation continues; if necessary, a translation buffer miss or a page fault is serviced. 
NANs are propagated by the floating units, and checked only when they are written to memory or converted to
integers or booleans.  Correct programs exhibit correct behavior with speculative execution on the Trace, but an
incorrect program may not signal an exception that it would have signaled if compiled without speculative
execution.

The hardware also supports precise floating exceptions, but the compiler cannot move floating operations above
conditional branches if this mode is in use.  This mode was only used when compiling for debugging.

The trap code supports access to misaligned data, piecing together the referenced datum from multiple 32-bit
words.  In doing so, it places 8 and 16-bit quantities in the correct place in a 32-bit word, so that extracts and
merges work correctly.

The 300 series supports three performance counters: a beat counter, a cache miss counter, and a bank-stall counter. 
These are accessible to software and provide very accurate measurements of program execution.

3.9  Compiler issues

In summary, the main compiler issues for the Trace machines are as follows.

• There are a large number of pipelined functional units, requiring from 10-50 data independent operations in
flight to fill the machine.  This large amount of instruction level parallelism requires scheduling beyond basic
blocks and a strategy for finding parallelism across loop iterations.  In addition, there is functional-unit
bandwidth to support speculative execution.

• Machine resources can be oversubscribed, and the pipelines use resources in every beat.  The compiler must
precisely model the cycle-by-cycle state of the machine even in situations where such a model is not critical
for performance.
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• There is an interleaved memory system that must be managed by the compiler.  Card conflicts cause program
error; bank conflicts affect performance.

• Each functional unit has its own register file.  It costs an operation to move a value between registers, although
remote register files may be targeted directly at the cost of an extra beat of latency.

4  Compiler history

The roots of Multiflow compiler technology are Fisher’s thesis on trace scheduling  [26, 27], and the Bulldog
compiler developed by Fisher, Ellis, Ruttenberg, Nicolau and others at Yale [28, 23, 54].  Bulldog implements
Fisher’s algorithm in a prototype compiler.  It presents a complete design of optimization, memory-reference
analysis, register allocation, and instruction scheduling in a trace scheduling compiler for a hypothetical VLIW.  At
Multiflow, Bulldog was used for experiments to guide the design of the Trace architecture.  It also served as the
high level design for the production compiler.

We deviated from the design of Bulldog only when profitable or necessary, but numerous changes were made. 
These changes were made for two reasons.  Most changes were due to the different goals and scope of the two
projects.  The Bulldog compiler is a 30,000 line Lisp program, compiling a small FORTRAN subset to a
hypothetical machine; its goal is to explore the issues in compiling for a VLIW.  The Multiflow compiler is a
500,000 line C program, compiling FORTRAN and C to a series of production VLIWs.  The goal of the compiler
is to generate high performance code for a VLIW and to present the traditional C and FORTRAN environment
found on a workstation or a mini-computer.  The different goals and scope of the two compilers led to major
changes.  The internal representations used by Bulldog were not adequate to represent the full programming
language semantics of FORTRAN and C; this led to a rethinking of the front end and the optimizer.  The
memory-reference analyzer was redesigned to exploit the complex view of memory relationships presented by
FORTRAN and C.  The machine model was recreated to represent the Multiflow Trace series of machines; the
instruction scheduler became much more complex.  The heuristics used throughout the compiler are more
developed and tuned, and several new optimizations were introduced.  Yet at the high level, the compiler has the
same structure as Bulldog, particularly the implementation of the trace scheduling algorithm.

The second source of changes were two fundamental issues not addressed by Bulldog: relative memory-bank
disambiguation and spilling registers.

• Memory-bank disambiguation.  Bulldog performs static bank disambiguation; the compiler determines which
memory bank would be addressed by each memory reference.  This requires that the compiler be able to
compute address mod b, where b is the number of banks, at compile-time; when the bank cannot be
determined, a central sequential memory controller is used.

Static bank disambiguation is impractical for languages with pointers and by-reference arguments.  The
Multiflow Trace permits relative bank disambiguation.1   The compiler must ensure that all of the references
issued simultaneously are to distinct banks, but it does not need to know which banks.  Relative conflicts are
more frequently resolvable at compile-time.  For example, if A is an aligned double precision array, A(I) and
A(I+1) are known to refer to different banks, though we typically do not know which bank A(I) references.

In Bulldog, bank disambiguation is performed as a single pass over the memory references in the program.  In
the Multiflow compiler, memory-bank management needs to be integrated with the scheduling of functional
units; this is a major complication to the instruction scheduler.

• Spilling registers.  The Bulldog compiler does not spill registers to memory; it assumes the machine provides
enough registers for the routine being compiled.  Our experience at Multiflow is that registers are a critical
resource of the machine.  In routines, other than simple kernels, that present a large amount of parallelism to
the compiler, the decision of when to spill and restore values is very important to achieving high performance.

1 In the context of the compiler, we frequently refer to both bus/card and bank conflicts as bank conflicts.
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5  Compiler structure

Figure 5-1: Structure of the Multiflow compiler

The Multiflow compiler has the three phase structure presented in Figure 5-1.  Phase 1 is a FORTRAN or C front
end, which produces a high level intermediate representation called IL-1.  Phase 2 analyzes and optimizes the
program, and lowers the representation into IL-2.  Phase 3 performs the trace scheduling algorithm and produces
machine code.

Phase 2 and Phase 3 operate on IL semantics, independent of the source language.  Operations in IL are n-tuples:
an op-code, followed by a list of written operands and a list of read operands.  Operands are either constants or
virtual registers called temporaries.  N-ary operations provide opportunity for flexible expansions into binary
operations; the optimizer can find more parallelism and more potential loop invariants and common
subexpressions.  They also provide a simple solution to the requirements of FORTRAN parentheses.

IL-1 is the interface between Phase 1 and Phase 2; it defines a high-level virtual machine.  At this level we attempt
to capture the memory access model defined by the programming language and defer lowering memory references
until Phase 2; this is very useful in performing memory-reference analysis.  Memory is referenced through explicit
load and store operations.  The stack pointer and the argument pointer are not introduced by Phase 1.  Array index
lists are preserved.  Addressing is not expanded unless required by language semantics.  Accessing the address of a
data object is marked with an explicit operation.

Data objects are grouped into packets, where a packet represents a group of variables with a language defined
storage relationship.1  Packets are the unit of storage allocation.  Two direct memory references can reference the
same storage only if they are in the same packet.  For indirect references, we define a template packet, which
describes the template the pointer wants to impose on memory.  This is similar to the Pascal record type, or the C
structure or union type.  Restrictions on alias relationships (such as between FORTRAN by-reference arguments)
can be associated with a template.  Each packet has a known 0 mod B alignment, i.e., mod(address(packet),B) = 0;

FORTRAN
source

Phase 1

Phase 2

Phase 3

front end

analysis
optimization

code selection
memory-reference

disambiguation

trace scheduler
instruction scheduler

machine model

C
source

IL-1

IL-2

1 Our definition of a packet is derived from the definition presented in [3].
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address(packet) is of the form s*B for some integer s.  We refer to s as a packet seed.  Packet seeds are useful
when determining whether two references can refer to the same bank.

IL-1 operations are successively lowered during optimization.  The output of the optimizer is a flow graph of IL-2
operations, which correspond to machine operations, except that we have not yet assigned the functional units to
perform the operations or the registers to hold their operands.

6  Front ends

The Multiflow compiler includes front ends for C [41] and ANSI FORTRAN 77 [6] with VAX/VMS extensions. 
Other languages (Pascal, Ada, Lisp) are supported by translators that generate C.  The front ends were derived
from the ATT pcc compiler suite [37, 25] by mapping the pcc intermediate representation to IL-1.  IL-1 is
higher-level than the pcc intermediate.  We implemented tree-synthesis algorithms to recapture array semantics
from the pointer arithmetic of pcc.  In retrospect, it may have been easier to generate our IL-1 directly from
semantic actions.

We implemented user level directives in both FORTRAN and C as structured comments.  Loop unrolling
directives allow the user to specify how a loop should be unrolled.  Inline directives allow functions to be inlined. 
Memory-reference directives allow the user to assert facts about addresses.  Trace-picking directives allow the user
to specify branch probabilities and loop trip counts.  In addition, the front end can instrument a program to count
basic block executions.  The instrumentation is saved in a data base which can be read back on subsequent
compilations.  This information is used to guide the trace picker.

We support the Berkeley Unix run-time environment.  Care was given to structure layout rules to ease porting from
VAX and 68000 base systems.  Despite the unusual architecture of the Trace, it was easier to port from BSD VAX
or 68000 systems to the Trace than to many contemporary RISC-based systems.

The FORTRAN IO library distributed with the ATT compilers is not adequate for high performance computing.  A
new high performance FORTRAN IO library was written and integrated with the FORTRAN front end.

7  The optimizer

The goal of the optimizer is to reduce the amount of computation the program will perform at run time and to
increase the amount of parallelism for the trace scheduler to exploit.  Computation is reduced by removing
redundant operations or rewriting expensive ones; this is the goal of most optimizers.  Parallelism is increased by
removing unnecessary control and data dependencies in the program and by unrolling loops to expose parallelism
across loop iterations.  The Multiflow compiler accomplished these goals with standard Dragon-book style
optimization technology [1] enhanced with a powerful memory-reference disambiguator.

7.1  Organization

The optimizer is designed as a set of independent, cooperating optimizations that share a common set of data
structures and analysis routines.  The analysis routines compute control flow (dominators, loops) and data flow
(reaching defs and uses, live variables, reaching copies).  In addition, the disambiguator computes symbolic
derivations of address expressions.  Each optimization records what analysis information it needs, and what
information it destroys.  The order of optimizations is quite flexible (in fact it is controlled by a small interpreter). 
The order used for full optimization is given in Figure 7-1.
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Basic optimizations:
Expand entries and returns to IL2
Find register variables 
Expand memory ops to IL2
Eliminate common subexpressions
Propagate copies
Remove dead code
Rename temps
Transform ifs into selects

Prepare for first loop unrolling:
Generate automatic assertions
Move loop invariants
Find register memory references
Eliminate common subexpressions
Transform ifs into selects
Find register expressions
Remove dead code

First unroll:
Unroll and optimize loops
Rename temps
Propagate copies
Simplify induction variables
Eliminate common subexpressions
Propagate copies
Remove dead code

Second unroll:
Unroll and optimize loops
Rename temps

Prepare for Phase3:
Expand calls into IL2
Walk graph and allocate storage
Analyze for dead code removal
Remove assertions
Remove dead code
Expand remaining IL1 ops to IL2
Propagate copies
Remove dead code
Rename temporaries

Figure 7-1: Optimizations invoked by Multiflow compiler

7.2  Control dependence

By control dependence, we mean barriers to instruction-level parallelism that are caused by the control flow of the
program.  Control dependence is introduced by conditional branches, function calls and loops.

Control dependence introduced by conditional branches is directly addressed by trace scheduling, which performs
speculative execution above a branch; this works best for highly predictable branches.  In addition, the 300 series
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supports predicated execution with a three input select operation, and for if-then branches, the compiler generates a
select if the then clause is not too expensive.  For example, the compiler maps 

This removes many short forward branches and makes trace scheduling much more effective.  The 500 series
includes predicated stores and predicated floating point operations.

Function calls are addressed by inlining.  The compiler will inline small leaf procedures.  In addition to removing
the overhead of the procedure call, this increases the size of traces and provides more opportunities for parallelism. 
More aggressive inlining can be performed by the user with command line arguments or directives.

Loops are addressed by unrolling.  Loops are unrolled by copying the loop body including the exit test (see Figure
7-2).  Most compilers remove exit tests when unrolling a loop by preconditioning.  To unroll by n, a pre-loop is
added to handle trip-count mod n iterations, and the loop processes n loop bodies at a time. Unlike most machines,
the Trace has a large amount of branch resource, and there is no advantage to removing exit branches.  By leaving
the branches in, we eliminate the short-trip count penalty caused by preconditioning.  In addition, loops with data
dependent loop exits, which cannot be preconditioned (e.g.,  while loops), can also be unrolled and optimized
across iterations.  For loops with constant trip-count, all but one exit test can be removed, and small loops can be
unrolled completely.

Preconditioning is a separate optimization; it is only used to support pair mode (a hardware feature that allowed
vectors of length 2) or the math intrinsics (as explained below).  In practice, when preconditioning, we actually
postcondition the loop, for this makes it possible to make assertions about alignment on loop entry.  The 500 series
has less branch bandwidth, and postconditioning is required to achieve peak performance.

loop unrolled by 4 pre-cond by 4 post-cond by 4

L:  if-- goto E L: if-- goto E if-- goto L L: if-- goto X
body body body body
goto L if-- goto E if-- goto L body

E: body body body
if-- goto E if-- goto L body
body body goto L
if-- goto E L: if-- goto E X: if-- goto E
body body body
goto L body if--goto E

E: body body
body if-- goto E
goto L body

E: E:

Figure 7-2: Styles of loop unrolling

Loops are unrolled heavily.  A loop must be unrolled enough to expose sufficient parallelism within the loop body
to enable the instruction scheduler to fully utilize the machine. Unrolling is controlled by a set of heuristics which
measure the number of operations in the loop, the number of internal branches, and the number of function calls. 
A loop is unrolled until either the desired unroll amount is reached or one of the heuristic limits is exceeded.  For
example, if the target unroll amount is 8 and the operation limit is 64, we will unroll a loop body with 8 or less
operations 8 times.  If the body contains 9 operations, it will be unrolled 7 times.  If it contained 30 operations, it
would only be unrolled twice, and if it contained more the an 32 operations, it would not be unrolled at all.

 The default unrolling in FORTRAN for a Trace 14-wide is 16; at the highest level of optimization, we unroll by
96.  The corresponding limits are given below.

IF (cond) X = Y + Z
X = cond ? t : X
t = Y + Z
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optimization level 1 2 3 4

total unrolling 16  32  64  96
first unrolling 16  32  32 32
second unrolling —  —  2 3
max operations 128 256  512  768
max branches  0 2 4  8
max calls 0  0 0  0

Figure 7-3: FORTRAN unrolling for Trace 14/300

The limits were determined experimentally on a small set of benchmarks, and worked well in practice.  The
compiler includes another set of heuristics that controlled the unrolling based on the utilization of machine
resources by the loop body, but in practice it did not outperform the simpler scheme.

Loop unrolling is done in two steps: a first unrolling where the loop body is copied, and a second unrolling where
the first-unrolled bodies are copied as a unit.  The two step approach allows us to keep the first unrollings
relatively small and still unroll heavily.  The ordering of optimizations is heavily influenced by our two phase loop
unrolling design (see figure 7-1).  Most standard optimizations are performed before the first unrolling; this
permits us to have an accurate estimate of loops size for our heuristics.  After the first unrolling, the induction
variables are rewritten, and optimization is performed across the unrolled bodies (achieving the effect of predictive
commoning [55]).  Both induction variable simplification and commoning across loop bodies may increase register
pressure.  By keeping the first unrolling small, we prevent the register pressure in the loop from exceeding the
available registers.  We also keep the constant displacements introduced by the induction variable simplification
small, so that the immediate resource in each instruction is not oversubscribed.

7.3  Data dependence

The compiler’s strategy for eliminating unnecessary data dependence is to map as many variables as possible to
temporaries (virtual registers) where they can be more easily analyzed and optimized.  The major optimizations for
removing data dependence are copy propagation and temporary renaming.  The compiler also rewrites reduction
loops to minimize recurrences between loop iterations.

7.3.1   Allocating variables to temporaries

The optimizer attempts to place each variable and value in a temporary, unless the semantics of the program
requires it to be in memory; this includes aggregates (i.e., structures) except for arrays.  The instruction scheduler
will then spill values to memory as needed when allocating registers.  This eliminates as many references as
possible from the program and permits the instruction scheduler to place the necessary ones (spills and restores) at
optimal points in the program.  Minimizing memory references is important on Trace systems, for they have no
data cache.

The attempt to place values in temporaries is done over the entire program and then for each loop.  This is first
done by a straightforward analysis of the IL-1 program presented to Phase 2, which places unaliased scalars and
aggregates in registers on a routine-wide and loop-by-loop basis.  Later optimizations use the disambiguator to
place loop invariant array references and indirect references in registers.

To enhance the capabilities of the disambiguator, the compiler will assert the condition tested by a conditional
branch after the branch.  In particular, the compiler will assert that the induction variable of the loop is within the
loop bounds.  For example, in the following, the compiler asserts that i >= k+1 and i <= n in the inner loop.  This
permits the disambiguator to know that a(k,j) cannot reference the same location as a(i,j), and thus can safely be
moved out of the loop.
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do j = k+1, n
do i = k+1,n

a(i,j) = a(i,j) + a(k,j)* a(i,k)
end do

end do

Two classes of loop-varying array and indirect references are maintained in registers, achieving an effect similar to
scalar replacement [9].  The first, called register memory detection, detected address invariant references that were
unaliased in a loop (such as c(i,j) below).

do j = 1,n
do i = 1,n

do k = 1,n
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do

The second, called register expression detection, detects recurrences of the form below and maintains the
corresponding array element in a temporary.  (Actually, f(v) can be any expression tree.)

original loop body transformed body
... ....
a := f(x) a := f(x)
... ...
b := f(v) b : = t
... ...
v := c ? v : x v := c ? v : x
... t := c ? t : a

where t is initialized in the
loop pre-header as t:= f(v)

Both of these transformations enable some loops to be rewritten as reductions, as discussed below.

7.3.2   Removing data dependence

After memory references are removed, the compiler attempts to remove data dependence with temporary renaming
and copy propagation.  Temporary renaming splits temporaries into disjoint use-def webs.  Copy propagation
propagates a copied value to its use.  These optimizations are invoked multiple times.  Together, they are used to
prepare for induction variable simplification on an unrolled loop.

Initially, an unrolled loop has very little parallelism between unrollings, because of the dependencies on induction
variables; see the dependencies on i in Figure 7-4.  By renaming i ,and then copy propagating, we can remove
those dependencies.  By propagating integer additions of a constant, we can express the i0, i1, i2 as secondary
induction variables of the primary induction variable i , and we have set the loop up for successful induction
variable simplification.
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unrolled renamed copy propagated

 i = 1  i = 1  i = 1
L1: L1: L1:
 if (i > n) goto exit  if (i > n) goto exit  if (i > n) goto exit 
 ld a(i)  ld a(i)  ld a(i)
 st a(i)  st a(i)  st a(i)
 i = i + 1  i1 = i + 1  i1 = i + 1

 if (i > n) goto exit  if (i1 > n) goto exit  if (i1 > n) goto exit
 ld a(i)  ld a(i1)  ld a(i1)
 st a(i)  st a(i1)  st a(i1)
 i = i + 1  i2 = i1 + 1  i2 = i + 2

 if (i > n) goto exit  if (i2 > n) goto exit  if (i2 > n) goto exit 
 ld a(i)  ld a(i2)  ld a(i2)
 st a(i)  st a(i2)  st a(i2)
 i = i + 1  i3 = i2 + 1  i3 = i + 3

 if (i > n) goto exit  if (i3 > n) goto exit  if (i3 > n) goto exit 
 ld a(i)  ld a(i3)  ld a(i3)
 st a(i)  st a(i3)  st a(i3)
 i = i + 1  i = i3 + 1  i = i + 4
 goto L1  goto L1  goto L1

Figure 7-4: Removing dependencies on an induction variable

When a variable is live on loop exit, unrolling a loop can create a situation where multiple definitions of the same
variable reach the same use.  The various definitions cannot be independently renamed, and the definitions will not
be able to be issued speculatively above the preceding loop exit.  To remove this problem, we insert a self
assignment at each loop exit for every variable that is both defined in the loop and live on the exit.  This permits
the variables to be renamed.  We pay an extra move on exit from the loop to enable parallelism between loop
iterations.  See Figure 7-5.

unrolled self assignments renamed 

  i = 1  i = 1  i = 1
 L1: L1: L1:
  if (i > n)  if (i > n)  if (i > n)
    { goto exit }    { x = x; goto exit }    { x = x4; goto exit }
  x = ld a(i)  x = ld a(i)  x1 = ld a(i)
  i = i + 1  i = i + 1  i1 = i + 1

  if (i > n)  if (i > n)  if (i1 > n)
    { goto exit }    { x = x; goto exit }    { x = x1 ; goto exit }
  x = ld a(i)  x = ld a(i)  x2 = ld a(i1)
  i = i + 1  i = i + 1  i2 = i + 2
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  if (i > n)  if (i > n)  if (i2 > n)
    { goto exit }    { x = x; goto exit }    { x = x2 ; goto exit }
  x = ld a(i)  x = ld a(i)  x3 = ld a(i2)
  i = i + 1  i = i + 1  i3 = i + 3

  if (i > n)  if (i > n)  if (i3 > n)
    { goto exit }    { x = x; goto exit }    { x = x3 ; goto exit }
  x = ld a(i)  x = ld a(i)  x4 = ld a(i3)
  i = i + 1  i = i + 1  i = i + 4
  goto L1  goto L1  goto L1

Figure 7-5: Removing dependencies on a variable live on loop exit

7.3.3   Reductions

The compiler will rewrite a loop containing a reduction, where a reduction is a recurrence of the form a = a op
fn(i), where op is commutative and associative.  The reduction will be rewritten into n interleaved reductions, and
the n results will be combined on loop exit.  For example, a dot product would be transformed:

t1 = 0.0
t2 = 0.0
t3 = 0.0
t4 = 0.0

x = 0.0 x = 0.0
i = 1 i = 1

 l1: l1:
if (i>n) goto exit if (i > n) goto exit
x = x + y(i)*z(i) t1 = t1 + y(i)*z(i)
goto l1 i = i + 1
exit: if (i > n) goto exit

t2 = t2 + y(i)*z(i)
i = i + 1 
if (i > n) goto exit
t3 = t3 + y(i)*z(i)
i = i + 1
if (i > n) goto exit
t4 = t4 + y(i)*z(i)
i = i + 1 
goto l1

exit:
x = t1 + t2 + t3 + t4

The interleave amount is determined by the number of the reduced operations that can be simultaneously active in
the machine (pipeline latency times number of functional units).  The dot product above would be interleaved by 4
on the Trace 14/300.  To give the instruction scheduler more freedom, the optimizer will unroll the loop at least
twice the interleave amount, and insert self-assignments on the loop exits and rename as described above.

For some floating point operations, the reassociation performed by reductions is (strictly speaking) illegal
according to FORTRAN semantics, but in almost all cases when performing such operations in loops, the order is
unimportant.  Also, we provide a switch to prevent this optimization in cases where the result could differ (e.g.,
floating point addition/subtraction), without inhibiting other cases (e.g., min/max, integer operations, etc.)
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The compiler will also detect parasite reductions, where the desired value is maintained in parallel with the
reduced value.  For example, idamax, which returns the index of the maximum in a vector, is recognized as the
parasite of a max reduction and interleaved.  See Figure 7-6.

idamax = 1
dmax = dabs(dx(1))
do 30 i = 2,n

if(dabs(dx(i)).le.dmax) goto 30
idamax = i
dmax = dabs(dx(i))

30 continue

idamax0 = 1
idamax1 = idamax0

 idamax = 1 dmax0 = abs(dx(1))
dmax = dabs(dx(1)) dmax1 = dmax0
 i = 2 i = 2

L1: L1:
if (i > n) goto exit if (i > n) goto exit 
a = dabs(dx(i)) a0 = dabs(dx(i))
b = a .gt.  dmax b0 = a0 .gt.  dmax0
idamax = b ? i : idamax idamax0 = b0 ? i : idamax0
dmax = b ? a : dmax dmax0 = b0 ? a0 : dmax0
i = i + 1 i1 = i + 1
goto L1

exit: if (i1 > n) goto exit 
a1 = dabs(dx(i1))
b1 = a1 .gt.  dmax1
idamax1 = b1 ? i1 : idamax1
dmax1 = b1 ? a1 : dmax1
i = i + 2
goto L1

exit:
t0 = dmax0 .gt.  dmax1
t1 = dmax0 .eq. dmax1
t2 = idamax0 .lt. idamaxa1
t3 = t1 and t2
b = t0 or t3
dmax = b ? dmax0 : dmax1
idamax = b ? idamax0 : idamax1

Figure 7-6: idamax reduction

7.4  Reducing computation

The basic optimizations used to reduce computation are standard, though they have some interesting features. 
Both loop invariant motion and common subexpression elimination (CSE) use the disambiguator to detect location
conflicts between memory references; this allows these optimizations to deal effectively with array references and
indirect references.  As discussed above, induction variable simplification is performed on heavily unrolled loops. 
In addition to strength reducing the address expressions, it must minimize the number of live registers required
across the loop bodies (either induction variables or loop invariants) and make the best use of the constants in each
instruction.  Common subexpression elimination is performed on extended basic blocks.  When performed after
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loop unrolling, it can detect redundant computations across loop bodies.  For example, in Livermore kernel 7, only
3 new loads are required each iteration; the compiler detects this and the corresponding redundant flops as well.

do 7 l= 1,loop 
do 7 k= 1,n 

x(k)= u(k ) + r*( z(k ) + r*y(k )) +
 . t*( u(k+3) + r*( u(k+2) + r*u(k+1)) +
 . t*( u(k+6) + r*( u(k+5) + r*u(k+4))))
7 continue

Our common subexpression algorithm performs local cleanups in addition to commoning. Within an extended
basic block it performs constant folding, copy propagation, operation simplification, and dead code removal. These
are optimizations that are easy to perform once a data dependency graph for the extended basic block is built.  
Copy propagation and dead code removal are also performed globally in separate optimizations.

CSE also detects and optimizes calls to the math intrinsics.  The core math intrinsics (atan, atan2, cos, cos_sin, exp,
log, pow, sin) are implemented in n-at-a-time versions, where n is one of 1, 2, 4, 8, or 16.  N arguments are passed
to the intrinsics and n values returned.  CSE will look for multiple calls to an intrinsic, and substitute a call to an
n-at-a-time function.  The loop unroller postconditions loops that contain an intrinsic (we do not allow an intrinsic
to be called speculatively) producing the equivalent of vector intrinsics.

before after

x1 = sin(y1) (x1,x2) = sin_2(y1,y2)
x2 = sin(y2)
z1 = cos(y) (z1,z2) = cos_sin(y)
z2 = sin(y)
do i = 1,n do i = 1,8*(n/8),8

x(i) = sin(y(i)) (y1,...,y8) = y(i:i+7)
end do (x1,...,x8) = sin(y1,...,y8)

x(i:i+7) = (x1,...,x8)
end do

<postloop not shown>

Our approach can also be applied to programs that do not have a structured use of intrinsics.  For example, in
Figure 7-7 below, 13 calls to sin and cos are replaced with 5 calls (1 to cos, 1 to cos_2, 1 to sin_2, 1 to sin_4,
and 1 to cos_sin_2).

tht0 = thtp(me) - tht1zr*(ee - 0.75*rr)
 1 -tdel3*(bet(me)+wep(me,1))
 2 +talf1*(del(me)+vep(me,1))
 3 +gimbl(me)/dsin(psigim(me))*
 4 (tht2(me)*dcos(psii+psigim(me))
 5 tht1(me)*dsin(psii+psigim(me)))

dtht0 = dthtp(me) -tdel3*(dbet(me)+dwep(me,1))
1 +talf1*(ddel(me)+dvep(me,1))
2 +gimbl(me)/dsin(psigim(me))*omeg(me)*
3 (-tht2(me)*dsin(psii+psigim(me)) 
4 tht1(me)*dcos(psii+psigim(me)))
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5 +gimbl(me)/dsin(psigim(me))*
6 (dtht2(me)*dcos(psii+psigim(me))
7 dtht1(me)*dsin(psii+psigim(me)))

stht0 = dsin(tht0)
ctht0 = dcos(tht0)
s2tht0 = dsin(2.0*tht0)
c2tht0 = dcos(2.0*tht0)
kbett = kbet(me)
kdell = kdel(me)
clds = cldstr(me)
gj0 = gj(me,1)

Figure 7-7: Non-vector candidate for n-at-a-time intrinsics.

Dead code removal is an iterative mark-and-sweep algorithm that removes operations that do not contribute to the
final result of the program; it also deletes dead control flow (e.g., conditional branches which always go one way
due to a constant condition and branches whose true and false successors are the same).  Dead code removal is
most profitable in conjunction with constant propagation and procedure inlining.  We use it additionally to clean up
information maintained for our disambiguator.  To enhance memory-reference analysis, we maintain subscript
information until the end of phase 2.  Array references are lowered twice, first to a form that contains both
base-displacement addressing and a subscript list, and finally to a form that contains only the base-displacement. 
Induction variable simplification inserts special deriv_assign operations that relate the new induction variables to
the original subscript expressions.  After the second lowering, the code that maintained the subscript expressions is
dead, and can be removed.  Similarly, assertions about addresses are maintained in the flow graph until the end of
phase 2.  In the final code expansions, the assertions are removed, and dead code removal eliminates the now-dead
code that maintained the values asserted.

8  The back end

The output of Phase 2 is a flow graph of IL-2 operations lowered to machine level.  Phase 3 performs
functional-unit assignment, instruction scheduling, and register allocation.  The work is divided into four modules:
the trace scheduler, which manages the flow graph and assures inter-trace correctness; the instruction scheduler,
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which schedules each trace and assures intra-trace correctness; the machine model, which provides a detailed
description of the machine resources; and a disambiguator, which performs memory-reference analysis.

Figure 8-1: Structure of Phase 3

9  The Trace Scheduler

9.1  1.  The algorithm

The trace scheduler performs the following steps:

  A. Copy the flow graph produced by Phase 2 and estimate how many times each operation will be executed.

  B. Perform the following loop until the entire flow graph has been scheduled.

  1. Using the execution estimates as a guide, pick a trace (a sequence of basic blocks) from the flow graph.

  2. Pass the trace to the instruction scheduler.  The instruction scheduler schedules the trace and returns a
machine language schedule.

  3. Replace the trace with the schedule in the flow graph and, if necessary, add copies of operations to
compensate for code motions past basic block boundaries.

  C. Emit the schedules in depth first order.

We describe these steps in detail below, except for the instruction scheduler, which is described in section 10.

9.1.1   Expect

Execution estimates (called expect) are calculated from loop trip count frequencies and the probabilities of
conditional branches.  We use the following rules:

Trace scheduler
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Model
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If operation O is an entry to a routine
expect(O) = 1.0/(number_of_entries)

If operation O is not the head of a loop
expect(O) = Sum_P( prob_i * expect_i )
where

Sum_P is the sum over all preds of O, such that
the pred is not a loop entrance.

prob_i is the probability of traversing the edge
from pred_i to this op.

expect_i is the expect of pred_i.

If operation O is a loop head:
expect(O) = iter_count * Sum_LE( prob_i * expect_i )
where

iter_count is the expected iteration count for the loop.
Sum_LE is the sum over all loop entrances to the loop.
prob_i is the probability of traversing the edge from

loop_entrance_i to O
expect_i is the expect of loop_entrance_i.

A loop entrance is an operation not in the loop which has a successor in the loop.  We insert a pseudo op to ensure
that each loop entrance has only one successor.  When calculating expect, we handle irreducible loops by treating
them as if they were reducible.  In the formulas above, if an operation is not a loop head, we ignore all loop
entrances that are predecessors, and if an operation is a loop head, we treat all loop entrances to that loop as
predecessors.

The probabilities at conditional branches are obtained from either a database collected during  previous executions
of the program, a user directive, or the simple heuristic that a conditional branch is  50-50 unless it is a loop exit. 
The probability of an exit from a loop is set to 1/iteration_count, where iteration_count is the expected iteration
count for that loop.  The expected iteration count for a loop is assumed to be 100.

9.1.2   Trace Picking

Traces are picked by first selecting the yet-to-be-scheduled operation with the highest expect.  This operation
becomes the seed for the trace, and the trace is grown forward (in the direction of the flow graph) and then
backward.  We grow the trace by picking a successor (or predecessor if moving backward) that satisfies the current
trace-picking heuristic.  If no successor (or predecessor) satisfies the current heuristic, the trace ends.  Traces
always end when we hit an operation that is already scheduled, or an operation that is already on the trace.  Also,
traces never cross the backedge of a loop, as explained below.  In addition, we end the trace when its length is
equal to max_trace_length, which varies from 1024 to 2048 operations, depending on the width of the machine and
the level of optimization.

The trace-picking heuristics are defined in terms of edges between operations in the flow graph.  The same criteria
are used to determine if an edge can be added to the trace, regardless of the direction we are growing the trace.  We
apply our heuristic to an edge from pred to  succ.  If we are growing the trace forward, pred is already on the trace;
if backward, succ is already on the trace.

We implemented a large number of trace-picking heuristics, but used only the two listed below.

• mutual most likely.  Both of the following conditions must be met:

The edge from pred to succ has the highest probability of all exits from pred  (i.e., if we are at pred, we
are "most likely" to go to succ).

The edge from pred to succ contributes the most expect to succ of all predecessors of succ  (i.e., if we are
at succ, we are "most likely" to have come from pred).
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• no compensation.  We want no compensation code to be required after instruction scheduling.  If neither pred
or succ is a rejoin or split, the edge is OK.  Rejoins and splits require special attention:

If  succ is a rejoin (i.e., it has multiple predecessors) then end the trace; compensation would be required
if succ is moved before pred in the schedule.

If pred is a rejoin then the edge is OK.

If succ is a split (i.e., it has multiple successors) then end the trace; compensation code would be required
if succ is moved before pred in the schedule.

If pred is a split then the edge is OK.

Mutual most likely is the heuristic used by default.  The  no compensation heuristic is used to avoid the creation of
compensation code; it restricts traces to a variant of basic blocks.  The compiler will switch into this heuristic if too
much compensation code has been created; see section 9.2.5.

9.1.3   Compensation code

After picking a trace the trace scheduler passes it to the instruction scheduler.  The instruction scheduler returns a
schedule.  The trace scheduler must examine the code motions the instruction scheduler performed to see if any
operations must be copied.  Splits (branches out of a trace) and joins (branches into a trace) determine the basic
block boundaries in the flow graph.  If a copy is necessary, it will be associated with a split or a join.

To discuss compensation code, we first need to introduce some notation.1   Trace_position(O) is the position of
operation O on the trace.  First_cycle(O) is the position of the first cycle of operation O in the schedule. 
Last_cycle(O) is the the position of the last cycle of operation O in the schedule.

A split operation, or split, is an operation with more than one successor (for example, a conditional branch
operation, or an indirect branch).  When the instruction scheduler moves an operation below a split on the
schedule, the trace scheduler must copy this operation on the off-trace edge.  For example, A is copied in Figure
9-1.  (In our examples, a machine instruction is denoted as [ op; op;... ])

Figure 9-1: Split compensation code

Each split S will have a tuple of compensation copies (s1,...,sm) where trace_position(si) < trace_position(S) and
first_cycle(si) > last_cycle(S).  The copies are placed on the split edge in source order (i.e., the order in which the
operations appeared on the trace.)
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1 Our notation is adapted from Ellis [23].
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A joined operation, or join, is an operation on the trace that is the target of a branch operation.  Whenever the
instruction scheduler moves an operation above a join, the trace scheduler must insert a copy of the operation on
the off-trace joining edge.  For example, C and D are copied in Figure 9-2.

Figure 9-2: Join compensation code

Before join compensation code is generated the trace scheduler must determine where to rejoin the schedule.  The
rejoin cycle R of a join to trace position J must satisfy the constraint that all operations O that appeared prior to J in
the trace (that is, trace_position (O) < J) must be complete before cycle R on the schedule.  For example, the join
to C on the trace above is moved to instruction 2 on the schedule.

Once the rejoin instruction is determined, the trace scheduler can determine the join compensation code.  Each join
to trace position J with rejoin cycle R will have a tuple of compensation copies (j1,...,jm) where trace_position(ji)
>= J and last_cycle(ji) < R.  They are placed on the join edge in source order.

If a split is copied onto a rejoin edge, additional copies are required.  Consider the join to B in Figure 9-3; the
rejoin instruction is 4.  A copy of C is needed on the off-trace edge of D”; otherwise the path from X to Y will be
incorrect.  In general, all operations that are between the join and the split on the trace that are not above the rejoin
instruction in the schedule must be copied on to the off-trace edge of the copied split.  Each split SJ copied on the
join to trace position J with rejoin cycle R will have a tuple of compensation code (sj1,...,sjm), where
trace_position(sji)>=J, trace_position(sji)<trace_position(SJ), and  last_cycle(sji)>=R.

Figure 9-3: Split copied onto rejoin edge
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9.1.4   Speculative code motion

Speculative execution, moving an operation from below a split on the trace to above a split on the schedule, does
not produce compensation code.  This is the most common code motion in the Multiflow compiler.  High priority
operations from late in the trace are moved above splits and scheduled early in the trace.  The instruction scheduler
will perform such a move only if it is safe: an operation cannot move above a split if it writes memory or if it sets a
variable that is live on the off-trace path.  The hardware provides support for suppressing or deferring the
exceptions generated by speculative operations.

Although it has been suggested that the compiler could insert code into the off-trace path to undo any effects of a
speculative operation, this is not done.  For simple register operations, such as incrementing a counter, the
operation is best "un-done" by targeting it to a register that is not live on the off-trace path.  For operations that
write memory or transfer control, the complexity of un-doing them outweighs the potential benefits.

9.1.5   Emitting the schedules

Since traces are selected along the most frequently traveled paths in the program, trace scheduling gives the effect
of profile-guided code positioning [59].  When the entire flow graph has been scheduled, the graph has been
transformed into a graph of schedules.  The trace scheduler then does a depth first walk from the entries, emitting
the schedules.  To avoid unnecessary branches between schedules in the emitted code, we always visit the
fall-through successor of a schedule first when performing the depth first walk.

On the Trace, the immediate resource in an instruction is shared across many operations, and obtaining peak
performance in an unrolled loop requires using short branches for loop exits in order to free up immediate space
the for memory offsets.  However, VLIW instructions are very large (128 fully packed instructions are 16Kb on a
28/300); loop exits must be positioned shortly after the loop body, to keep them within reach of the short branch
offset.  When we encounter a schedule that begins a loop, we change from a depth-first to breadth-first walk of the
graph, so that we can collect and position the loop exits.  When we exit the loop, we resume our depth-first walk.

9.2  Restrictions to trace scheduling

The Multiflow compiler places a number of restrictions on trace scheduling in order to limit the amount of
compensation code and to make the problem of engineering the compiler more tractable.

9.2.1   Loops

A trace does not cross a backedge of a loop.  This restriction is partly historical; Fisher did not consider picking
traces across a back edge in his first definition of trace scheduling [26].  But it has a number of advantages.  It
simplifies the instruction scheduler and trace scheduler, for they do not have to deal with the complexities of
scheduling multiple iterations of a loop simultaneously; the trace for a loop body can be treated identically to  a
trace from a sequence of loop free code.  It also simplifies the memory-reference analysis, as we discuss in section
13.  In addition, Nicolau relies on this restriction in his proof that trace scheduling terminates [54].

In practice, this restriction does not impact performance very much.  The most popular algorithm for scheduling
across the back edge of a loop is software pipelining [60, 44,  45, 21].  A software-pipelined loop scheduler could
be integrated into the Multiflow compiler in a straightforward manner.  It may improve the performance of vector
kernels, where we already perform excellently, but it would not address the weaker points of the compiler.

The attraction of software pipelining is that it is an algorithm for finding an optimal schedule for a loop kernel.  An
unrolling strategy that does not cross the backedge of the loop must always start up the loop bodies at the head of
the loop and wind them down at the bottom; these portions of the schedule will not use the machine optimally.  A
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software pipelined schedule can move the wind-up and wind-down portions of the schedule outside of the loop. 
See Figure  9-4. 

Figure 9-4: Loop unrolling and software pipelining

The Multiflow compiler will unroll loops heavily (up to 96 times on the 14/300) to amortize the loop wind-up and
wind-down over many bodies, mitigating their performance effect.  The unrolling does increase code size, but due
to the large instruction cache on the Multiflow machines this does not affect performance significantly.

For low trip count loops, software pipelining has no advantage. The wind-up and wind-down dominate the
execution time of the loop for both software pipelining and simple unrolling. Moreover, software pipeline
algorithms require a pre-loop [44] unless special hardware support is supplied [61,21]; the overhead of the pre-loop
must be amortized over the number of iterations spent in the software pipelined kernel.  The Multiflow unrolling
strategy does not require a pre-loop.  However, as suggested in [68], software pipelining can be extended to use
speculative execution and not require a pre-loop.

Very low trip count loops are best served by peeling off the first few iterations, so that a trace can be picked which
bypasses the loop entirely.  This permits the peeled iterations to be scheduled with the code preceding and
following the loop.  Testing for the zero trip case is always a performance advantage; peeling off additional
iterations can be guided by feed-back from previous executions of the program. Unfortunately, the Multiflow
compiler does not implement this optimization.

9.2.2   Splits

9.2.2.1  Controlling split compensation

To limit split compensation, the Multiflow trace scheduler requires all operations that precede a split on the trace to
precede the split on the schedule, except for stores.  Thus only store operations appear in split compensation code
and the amount of split compensation code in a program is very small.

This restriction limits the parallelism available to the scheduler, but has a small effect on performance.  An
intuitive explanation is that executing a split early does not typically speed the execution of the on-trace path; it
only speeds the off-trace path.  The Multiflow compiler achieves its speed-ups when it predicts the on-trace path
correctly.  The scheduler attempts to schedule a split as soon as all of its predecessors are scheduled, so that control
leaves the trace as early as it would with a conventional basic block compiler.  The off-trace path is not penalized
by trace scheduling, though it may not be sped up.

We permit stores to move below splits to avoid a serialization in the schedule; stores are never permitted to move
above splits.  Consider an alternating sequence of branches and stores, as in Figure 9-5.  If we required stores to
complete before any preceding branch, at most one store and one branch could be scheduled in one instruction. 
The Multiflow Trace 14/300 can issue 4 stores and 2 branches per instruction.  By allowing the stores to move
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below splits, we gain parallelism on-trace in exchange for a small amount of split compensation code.  See Figure
9-5 (b).1  Note that an unrolled vector loop will contain a sequence of branches and stores intermixed with other
operations.

 

Figure 9-5: Scheduling with and without a store-branch constraint

9.2.2.2  Source-order splits

By constraining a split by all of its trace predecessors (except for stores), splits are scheduled in source order.  This 
has two important consequences.  First, source-order splits restrict compensation code as required by Nicolau in his
proof that trace scheduling terminates [54], though this is a stronger restriction than required.  Second,
source-order splits ensure that all paths created by the compensation code are subsets of paths (possibly
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4: [             st3; exit4]if
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7: [             st6;   br] 

(b) Schedule without store-branch constraint

0: [ A0; A1; exit0]if

1: [ A2; A3; st0; exit1; if ] if st1’; goto exit2 

2: [ A4; A5; st1; st2; exit3; if ] if st3’; goto exit4 

3: [ A6;      st3; st4; exit5; if ] if st5’; goto exit6 

4: [             st6; br] 

1  A compiler for a machine that can issue at most one branch or store per cycle need not move stores below splits.
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re-arranged) in the flow graph before trace scheduling.  This fact is relied upon by our memory-reference analyzer. 
The proof of this fact requires a case-by-case analysis following Nicolau [54] and is beyond the scope of this
paper.  Figure 9-6 shows how rearranging splits can create a potential trace that does not correspond to a flow path
in the original flow graph.  Consider the compensation code for the rejoin w.  It creates a path w-C’-D’-B’’-x,
which contains both x and C.  In the original flow graph, C and x are never on the same path.

Figure 9-6: Splits scheduled out of source order

9.2.2.3  Indirect branches

Indirect branches (or igotos) are treated like other splits except when two indirect branches target the same label. 
In this case, no compensation code can be generated, and no motion below the igoto is permitted.  An igoto
branches to a location through an address previously computed and stored in a variable.  If two igotos potentially
branch to the same location, it is impossible to redirect one of the igotos to a new target location without
redirecting the other.  In the example in Figure 9-7, tag B has two predecessors, and there is no place to insert
compensation code between igoto X and tag B that is not also executed along the path from igoto Y to Tag B. 
Therefore no compensation code can be allowed.

Figure 9-7: Indirect branches with a common target

By inserting multiple tag pseudo ops, the front end and the optimizer can avoid this flow graph construct for the
common uses of indirect branching (C switch statements and FORTRAN computed goto).  Only the translation of
a FORTRAN assigned goto may require a flow graph where more than one igoto targets the same label. 

The instruction scheduler restricts code motion to prevent an igoto from being copied onto a join edge, for this
would cause the copy and the on-trace igoto to share the same targets.

9.2.3   Joins

9.2.3.1  Determining the rejoin point

As stated in Section 9.1.3, the rejoin cycle R of a join to trace position J must satisfy the constraint that all
operations O that appeared prior to J in the trace must complete before cycle R on the schedule.  On a machine
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with self-draining pipelines like the Trace, we could permit R to be the first cycle such that all operations which
preceded the join on the trace have started.  For example, in Figure 9-8, we could rejoin to cycle 1.  This would
avoid copying B, C, and D on the rejoin edge. 

Figure 9-8: Early rejoin is beneficial to off-trace path

Unfortunately, there are schedules for which the early rejoin incurs an execution time penalty for the off-trace path. 
Consider the schedule in Figure 9-9.   If we rejoin to cycle 1, we  slow down the off-trace path, and do not avoid
any rejoin compensation code.

Figure 9-9: Early rejoin slows off-trace path

Note the instruction scheduler does not consider the placement of rejoins when creating a schedule; this analysis is
performed after the schedule has been created.  To avoid penalizing the off-trace code, we want to wait for the the
pipelines of operations above the rejoin to drain to a point where they no longer constrain other operations in the
schedule and then rejoin the schedule.  To avoid a complicated heuristic, we always delay the rejoin until all
operations that preceded the join on the trace are complete, creating the necessary rejoin copies.

9.2.3.2  Multiple joins

Sometimes a joined operation serves as the target of multiple branch operations.  In this case we must decide
whether there should be a separate compensation copy for each joining edge or if the joining edges should share a
single instance of the compensation copies.  If separate copies are inserted, it is possible that these copies can be
merged into the off-trace code.  Furthermore, only a single branch instruction is needed (to transfer control to cycle
R).  A single copy of the compensation code, on the other hand, reduces the amount of code growth.  In the
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Multiflow compiler, we opted to place a separate set of join copies on each joining edge.  To control code growth,
we do not allow code motion above an operation that has more than 4 predecessors.  See Figure 9-10 .

Figure 9-10: Compensation code alternatives for multiple joins

9.2.4   Copy suppression

Unrolling loops with internal branches can cause a very large amount of join compensation code.  See Figure 9-11. 
In this loop all of the join compensation code is redundant; each potential rejoin copy has been scheduled in an
instruction that dominates the rejoin.  This problem, noted in [23], was the motivation for our copy suppression
algorithm.

Copy suppression detects if an operation has been moved to a point in the schedule that dominates the rejoin.  If  it
has, and the result of the operation is live at the rejoin, a copy is not necessary.  The details of this algorithm and
our implementation are described in [33].  With copy suppression, the compiler can profitably unroll loops with
internal branches.

9.2.5   Fail safe trace scheduling shutdown

When the number of copies in a program is twice the number of original operations, the trace scheduler will no
longer permit compensation code to be generated.  This ensures that the program will finish compiling relatively
rapidly.  This is rarely activated in normal compilation, and is a fail-safe recovery from worst case copying (as
might be generated for a heavily unrolled loop with internal branches, where the copy suppression algorithm is not
successful.)
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Figure 9-11: Join compensation code when scheduling a loop with internal branches.

9.3  Communication between schedules

The instruction scheduler schedules one trace at a time, but it requires information about
neighboring traces for correctness and to optimize the performance on inter-trace transitions.  In
addition to a trace, the trace scheduler passes the following information to the instruction
scheduler:

• Information about pipelines and memory references in the neighborhood of the split or join.

• Information about register bindings and live variables

9.3.1   Partial schedules

The functional-unit pipelines on the Multiflow machines use machine resources in every beat. For example, an
integer ALU operation that writes a remote register file has a 3 beat pipeline.
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• In beat 1, it uses an IALU, one or two register file read ports,  and possibly an immediate field.

• In beat 2, it uses a bus from the IALU to the remote register  file.

• In beat 3, it uses a write port in the remote register file.  (The result is bypassed and can be read by the local 
functional unit in this beat.)

Because the hardware does not check for oversubscription of resources, the compiler must
precisely model the resource utilization in every beat. The resources used by operations in a
trace are modeled by the instruction scheduler as it creates a schedule. However, a split may
leave a schedule with pipelines in flight. The compiler must track the resources used to wind
down these pipelines. Similarly, a join to a schedule may require winding up some pipelines.
Information about pipelines in flight must be associated with each split from and join to a
schedule.

We call the the set of pipelines bisected by a split or join a partial schedule.

9.3.1.1  Creating partial schedules

A partial schedule is the upper or lower half of a set of pipelines bisected by a split or join [23].  Our notation for 
the nth beat of the pipeline for an operation O is O-n.  In Figure 9-12, the join from X bisects C, and the split from
B bisects A.  The join partial schedule is [C-1]/[C-2]; the split partial schedule is [A-3]/[A-4].

Figure 9-12: Partial schedules

On a join, the upper half of the bisected pipeline is copied onto the rejoining edge.  An operation is in a join partial
schedule for a join to trace position J with rejoin cycle R if  trace_position(O) >= J, first_cycle(O) < R, and
last_cycle(O) >= R.  In targeting a rejoin, we have to make sure that a branch can be added to the last cycle of the
join partial schedule.  We cannot insert a new instruction with a branch between the partial schedule and the
schedule, for that will shift the resources used by the pipelines and may disrupt the schedule we are joining.  If a
branch cannot be added to the last cycle of the partial schedule, we must try to join to subsequent cycles until we
find a compatible cycle or we reach the end of the schedule (where we know we can rejoin).  For example, if [C-2]
locks out a branch in the example above, we cannot join to cycle 4, but must try to join at cycle 5; if [C-3] locks
out a branch, we can join to the end of the schedule.

On a split, the bottom half of the bisected pipeline is copied onto the split edge.  An operation is in a split partial
schedule for split s if first_cycle(O) <= last_cycle(s), and last_cycle(O) > last_cycle(s).  Note we must include the
operations that are speculatively scheduled above the split and bisected by the split edge.
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9.3.1.2  Merging partial schedules

A trace with a predecessor of previously scheduled code may have an associated wind-down partial schedule.  This
partial schedule will be passed to the instruction scheduler along with the trace, and it will be placed in the first
instructions of the schedule.  See  Figure 9-13.

Figure 9-13: Wind-down partial schedule

Similarly,  a trace with a successor of previously scheduled code may have an associated wind-up partial schedule. 
This partial schedule will be passed to the instruction scheduler along with the trace, and it will be placed in the
last instructions of the schedule.   See Figure 9-14.

Figure 9-14: Wind-up partial schedule

Information about the machine resources used in the schedule joined by the wind-down partial schedule is also
maintained.  This permits the two traces to be more tightly merged.  On a machine with self-draining pipelines, the
tail of a pipelined operation only consumes resources; it does not require an operation to be initiated. The tail can
be placed on a flow path where it will have no effect unless the first cycle of the operation is executed.  In Figure
9-15, the last two cycles of W are placed in the schedule we join to.  If  control flows to instruction 4 with  W in
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flight, W-3 continues the pipeline.  If control falls through to instruction 4 from instruction 3, W-3 is a nop.  The
compiler performs this merge after creating the schedule for the trace.

Figure 9-15: Merging partial schedules

9.3.1.3  Memory-reference information

When the instruction scheduler creates a partial schedule it also saves information about  the memory references in
the partial schedule and about the memory references in the 4-beat bank-stall window before the split or after the
join.  This permits the instruction scheduler to perform card and bank analysis when merging partial schedules.

9.3.2   Register bindings

When scheduling a trace, the instruction scheduler must decide where to read the variables that are live on entry to
the trace and where to write the variables that are live on exit from the trace. For the first trace, no binding
decisions have been made and the instruction scheduler is free to reference these variables in the locations that
result in the best schedule. Most subsequent traces will be entered from or branch to machine code schedules
where binding decisions have already been made. When a trace is entered from a machine code schedule, it must
read its upward-exposed variables from the locations where the machine code last wrote them. When a trace
branches to a machine code schedule it must write downward exposed variables into the locations read in the
machine code below. This analysis is applied to all register candidates, which are IL temporaries and constants; we
use the term value to describe both.

9.3.2.1  Value-location bindings

The information about value-location bindings within scheduled code is recorded and communicated via a data
structure called a Value-Location Mapping (VLM) [30].1   A VLM maps a set of values into a set of locations; one
value may have more than one location, but each location will have at most one value. VLMs are created by the
instruction scheduler after it has generated machine code for a trace.  A distinct VLM is required for each split
from and for each join to the schedule.  The VLM at a split describes where the schedule has placed its downward
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1 Ellis called these defs and uses [23].



TJS final – 40 – 10/30/92

exposed values.  The VLM at a join describes where the schedule reads its upward-exposed values.  The following
example shows the VLMs created by the instruction scheduler for a simple trace.

After the VLMs are created, they are added to the flow graph to guard the borders of the schedule from the
surrounding intermediate code.  The trace picker then treats them like other  operations.  A VLM will always be
either the first or last element of a trace. When a VLM is the first operation on a trace, the instruction scheduler
must read any upward-exposed values from one of the locations given by the VLM.  When a VLM is the final
operation on a trace, the instruction scheduler must leave a copy of each value in the VLM in each of the
associated locations.

9.3.2.2  Delayed Bindings

Some values are live at the top and bottom of a trace but are not referenced on the trace itself.  We want to avoid
making binding decisions for these values at the time the trace is scheduled.   Eventually, we will have to decide on
at least one location for each value through all the schedules that make up its live range.  It is not necessary, though
it is desirable, that a value reside in the same location in all the schedules that make up its live range.

Delaying the binding decision for a value until we actually schedule an operation that references it has several
advantages:

• We implicitly prioritize the values by the expected frequency of the access to them.  This allows us to weigh
the benefits of keeping different values in registers; given a conflict, we would most like to keep those values
in registers that are accessed in the highest frequency code, relegating spills and restores to the low frequency
“suburbs”.  (This achieves an effect similar to hierarchical coloring [10]).

• We can wait to choose locations until the scheduler actually sees how each particular value is accessed.  This
is especially important in the presence of function calls, which will require that their arguments and return
values be in certain prespecified locations.

• The Trace machines have many separate register banks with each functional unit connected to a distinct
register bank.  A value must be in the proper register bank to be a functional-unit operand.  We can make a
much better register assignment if we defer the assignment until we know the functional unit of a value’s
reader.

In order to delay the binding decisions for unreferenced live values, we devised a mechanism that we call delayed
bindings.  A delayed binding is a pseudo-location that may be assigned to an unreferenced value by the instruction
scheduler.  A delayed binding represents a connected subset of the value’s live range —a set of schedules that have
already been generated and through which the value must pass without data motion.  For each given value, the
same delayed binding is used in the VLMs at all the boundaries of the connected set of schedules.  As the
connected subgraph of schedules grows, the delayed bindings for the same value are merged.  When a binding
decision is finally made, the delayed binding is updated to reflect the assigned location.

A delayed binding accumulates information that will be needed to choose a physical location for a value.  For each
schedule, we maintain a set of registers not yet allocated in the schedule.  To resolve a delayed binding, we pick a
register in the intersection of the unallocated register sets of the delayed binding’s set of schedules.  If no such
register exists, a memory location is chosen.

Trace

z = A[i]

Schedule

0: freg1 = ireg1[ireg2]

(< A, ireg1 >
 < i,  ireg2 >)

(< A, ireg1 >
 < i,  ireg2 >
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Figure 9-16 is  an example of a delayed binding and its resolution.  The binding decision for Z has been delayed as
each of the schedules S6, S7, S8, and S9 were created and the delayed bindings for Z have been merged. At this
point VLMs exist at the entry and exit to the subgraph which map Z into a delayed binding spanning the schedules
in the subgraph.  When the trace containing the assignment to Z and the entry VLM is scheduled, register freg3 is
chosen and the binding is resolved.  The binding is propagated to the exit VLM.

Figure 9-16: Resolution of  a delayed binding

10  Instruction scheduler

Our instruction scheduler transforms a trace of IL2 operations into a schedule of wide instructions; it encompasses
both the scheduling and register allocation phases of other compilers [16, 32, 34, 17, 18, 56, 31, 55, 72, 11, 12]. 
The operations have been lowered to machine level by Phase2.  For each operation, the instruction scheduler must
assign registers for the operands, assign a functional unit for the operation, and place the operation in a wide
instruction.  It performs a three step algorithm.

  A. Build a data precedence graph (DPG) from the trace.

  B. Walk the DPG and assign operations to functional units and values to register banks.

  C. Perform list scheduling, creating the schedule and allocating registers.  While scheduling, group memory
references to minimize memory-bank conflicts.

10.1  The Data Precedence Graph

The instruction scheduler’s basic data structure is a Data Precedence Graph.  Each node in this graph represents a
value with its associated defining operation, and each edge represents a scheduling constraint.  There are three
types of edges in the DPG:

• Operand edges, which describe the creation and the use of a value.  These edges will require a register
assignment.

• Memory edges, which describe definite and possible conflicts between load/store and store/store pairs.

• Constraining edges, which define scheduling constraints inserted for both correctness and performance.

Scheduling a trace rather than a basic block or an extended basic block introduces very little complexity in the
instruction scheduler.  When building the DPG, edges are added to constrain some operations from moving above
splits.  After scheduling, the trace scheduler compensates for any global code motions performed by the instruction
scheduler.
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10.2  Clustering

In assigning functional units and register banks, we want to cluster the assignments so that neighbors in the DPG
are assigned to neighbors in the machine.  However, only by spreading a computation around the machine and
using all functional units can peak performance be achieved.  The clustering algorithm trades off the benefit of
parallelism with the cost of global data motion.  The width of the Trace 14/300 and 28/300 make this a difficult
problem.

It can be expensive to spread a computation across the machine.  Each functional unit has its own register bank
where it accesses its inputs.  If an operand is not in the local register bank, a register transfer is required.  A register
transfer adds latency to the calculation and consumes a functional-unit resource, preventing another operation from
being scheduled.  The functional units can write to either local or remote register banks, but writing to a remote
bank increases the latency and consumes a global bus.  These busses are also used to load values from memory,
and they are a critical resource on the Trace machines.

Some functional units have an overlapping but non-identical repertoire.  In particular, each cluster has two integer
ALUs of which only one can perform memory operations.  This presents a conundrum for induction variables and
memory references.  If the induction variable is kept locally to the memory-reference ALU, incrementing it
consumes the same resource required for a memory operation.  On the other hand, keeping the induction variable
local to the simple integer ALU requires two operations per induction variable update — one to increment the
induction variable and one to move it into the memory-reference ALU.  Fortunately, this latter strategy worked
well for vector loops, which are unrolled and strength reduced so that frequently an induction variable update can
be shared among a group of memory references.

10.2.1   BUG - The Bottom Up Greedy Algorithm

Our original approach to the clustering problem was taken directly from the Bulldog compiler — the Bottom Up
Greedy (BUG) algorithm.  BUG is a complex algorithm and is well described in [23].  The idea is to make a trial
schedule focusing only on the issue of minimizing the amount of data transfer latency.  The algorithm is "greedy"
because it chooses the best functional unit available to it at the time an operation is considered.  The resulting
schedule is discarded; only the functional-unit and register-bank assignments are retained.

The BUG algorithm is a depth first traversal of the DPG using the recursive function bug_Assign, starting at the
outputs (typically stores) working towards the inputs (typically loads.) The search is guided at each level by the
latency-weighted depth of the nodes, so that a critical path of the computation is always searched first.

bug_Assign(op,destination_fus)
{

if op is upwards-exposed VLM return
if op.fu is assigned return

foreach predecessor P in priority order {
if (P is operand of op) {

possible_fus = best_fus(op,destination_fus)
bug_Assign(P,possible_fus)
}

else
bug_Assign(P, nil)

}
op.fu = choose_fu(op,destination_fus)

}

Figure 10-1: The Bottom Up Greed (BUG) Assignment Algorithm

Here is an outline of how bug_Assign works:
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  A. When invoked on an operation, destination_fus, a list of possible destinations, is passed.  If the list is
non-null, at least one of the functional units  will be a reader of the operation’s result when the final
assignments are made.

  B. The predecessors P are visited in priority order, determined by the latency-weighted depth P in the DPG.  
Depth is measured from the entries to the DPG; it is a lower bound on the earliest time P could be scheduled. 
Items of greater depth are visited first; we visit the predecessors in order of maximum delay imposed on
scheduling op.  bug_Assign is recursively invoked on each P.

  C. If P is an operand of op, a list of the best functional-unit assignments for op is computed and passed along
with P.  Each functional unit on the list is an equally good assignment for op; it can compute the result and
deliver it to one of the destinations at as early as any other.  The estimate of completion time is based on:

  1. Scheduled times of already assigned operands,

  2. Latency-weighted depths of the unassigned operands,

  3. Functional-unit assignments of the already assigned operands and the time required to move the operand
from the functional unit that produced it,

  4. Earliest availability of the functional unit after its operands could optimistically be accessed (based on
1-3),

  5. The latency of the functional unit, and

  6. Earliest time to deliver the result to one of the destination functional units.

  D. After the predecessors have been scheduled, register banks are assigned to the operands of op, and op is
assigned a functional unit and placed in the schedule.

10.2.2   Problems with a greedy algorithm

A greedy algorithm is often inappropriate for the types of computations that attain peak performance on the wider
Multiflow machines.  Such computations are very parallel, for example, vector loops unrolled by the compiler. 
These codes have no single critical path; rather, all the computations are peers.  The goal is to layout the
computations on the machine in a manner that maximizes throughput rather than minimizing the latency of any
particular thread.  This general problem has a number of concrete manifestations.  Among them:

• A greedy algorithm might schedule non-critical path operations in one component that result  in delaying
critical path operations in later components.  For example, consider an unrolled daxpy

Figure 10-2: DAXPY, unrolled 2 times

A greedy depth first traversal will visit the LD B,0 before the LD A,1.  It will assign and schedule LD B,0
first, potentially delaying the start of LD A,1, and thus the completion of the second tree.  However, the LD
B,0 is not on the critical path of the first tree, and scheduling it first has no advantage.

T LD A,0

*LD B,0

+

ST B,0

T LD A,1

*LD B,1

+

ST B,1
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• Optimizing the completion time of the first component visited may result in spreading this component out
across the machine.  The resulting data motion will require the use of the global busses, reducing the number
of memory references that can be issued.  For example, in the daxpy4 shown in Figure 10-3, if all of the loads
and multiplies are performed in parallel on separate functional units, the first component can be completed
early.  However, the results of the multiplies must be moved to a common functional unit to perform the adds. 
This data motion competes with loads from later components for the global memory busses, and effectively
cuts the memory bandwidth in half.

Figure 10-3: One component of DAXPY4

• BUG will not consider how later parts of the computation will fit in the holes created in the schedule.  For
example, consider an unrolled and interleaved dot product.  

Figure 10-4: Dot product, unrolled 4 times

As the operations in the first tree are assigned, BUG makes the decision to load the two operands of the
multiply in parallel, targeting the same register bank.  This completely subscribes the register-bank write ports
for 7 and 8 beats later.  This prevents a multiply (which has a shorter pipeline) issued 4 beats later from
targeting the same register bank.  A better schedule will only load one operand of each multiply per beat,
which leaves a write port available for a later operation.

In addition, BUG does not consider memory-bank conflicts when assigning functional units; this  problem is
discussed later.  In the discussion above, we assume that no memory-bank conflicts are present.
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10.2.3   Controlling the Greed of BUG

In order to address these problems we imposed a system of constraints on BUG.  The idea is to impose a high
penalty on BUG’s latency calculation whenever it considers using more than one identical resource for a particular
thread of the computation.  This keeps the members of the same thread together in the same subset of the machine
and achieves parallelism by spreading the threads around the machine.  In detail:

• Partition the machine into a number of equivalent virtual clusters; a virtual cluster is a subset of a hardware
clusters described in section 3.  Each virtual cluster contains one functional unit of each kind and represents a
simple target with few placement choices.

• Partition the computation into components each of which contains relatively little parallelism and a relatively
large amount of shared data.  We partition the code into components using a depth first search from the
terminals of the DPG, traversing only operand edges.  A unique component is assigned to each terminal and to
each operation encountered for the first time in the search from that terminal.  This has the effect of
associating common subexpressions with only one of their descendent terminals.  In the examples in the
previous section, each tree is a component.

We would like to assign the components to the virtual clusters to spread the computation evenly through the
machine.  The existence of common subexpressions between components makes this nontrivial.  Consider
Livermore Kernel 12,  shown in Figure 10-5.  If we assign each component to a different cluster ignoring the
inter-component reads, we will have much more data motion than is required.  On the other hand, assigning all the
components to the same cluster does not utilize the other clusters in the machine.  The best solution to this problem
is to perform m successive components on the same cluster and then switch clusters.  This has the effect of
reducing the inter-cluster move cost by a factor of m.

c kernel 12 first difference.
do 12 k = 1,n

12 x(k)= y(k+1) - y(k)

Figure 10-5: LFK 12: First difference, with many common subexpressions

To achieve this assignment, we introduce a third data structure:

• Create a partitioning of the components into equivalence classes.  Two components are in the same
equivalence class if one contains an operation whose result is read by the other.  For computations such as
Figure 10-5, all the components belong to the same equivalence class.  On the other hand, for computations
that partition cleanly, as in Figure 10-4, each component has its own equivalence class.

BUG uses this system of virtual clusters, components, and equivalence classes to impose penalties by dynamically
associating a virtual cluster with each equivalence class.  Initially the association is undefined.  Each time a
functional unit is chosen for an operation, the equivalence class is assigned to the virtual cluster containing the
functional unit.  When alternative functional units are considered for an operation and their estimated completion
times calculated, a penalty is imposed if the operation’s equivalence class has an associated virtual cluster different
from that of the given functional unit.  This has the desired effect of keeping the members of the same equivalence
class in the same virtual cluster until a threshold of opportunity is reached.
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10.3  Scheduling and Register Allocation

Once functional-unit and register-bank assignments are complete, we make a second scheduling pass over the data
precedence graph.  The result of this pass is the schedule returned to the trace scheduler.  This pass performs three
tasks.

• Schedule machine resources such as functional units, register write ports, and busses, using a complete,
detailed model of the machine.  The Trace machines are not scoreboarded; resources can be oversubscribed,
and register dependencies are not checked by the hardware.  The schedule created by the compiler must be
accurate.

• Allocate registers, inserting spills and restores as necessary.

• Schedule memory references to avoid card conflicts and minimize bank conflicts.

10.3.1   Instruction Scheduler Design Choices

All instruction scheduler implementors face the same decisions about the basic structure of the scheduler.  The
choices are:

  A. Operation-driven versus cycle-driven.  Cycle-driven schedulers maintain a list of data ready operations and
consider cycles in turn, trying to fill them with high priority operations from the data ready list.  By contrast,
operation driven schedulers make a topological sort of the operations (driven by some priority heuristic,
usually critical path considerations).  They then consider the operations one at a time, trying to find the first
instruction cycle in which to place each operation.  BUG is an operation driven scheduler.  Our scheduling
and register allocation pass is cycle-driven.

  B. Forward versus backward scheduling.  Forward schedulers start by placing the leaves (typically LOADs) of
the computation first in the earliest possible cycles of the schedule and moving downward through the data
precedence graph to the roots (typically STOREs).  Backward schedulers turn this around.  Both of our
schedulers are forward.

  C. Backtracking and how much.  To what extent are the decisions made by the scheduler final?  BUG does no
backtracking.  Our scheduling and register allocation pass does a limited amount of backtracking.

  D. Separate register allocation and scheduling passes versus integration of register allocation and scheduling. 
Register allocation and instruction scheduling are often performed in separate passes due to the complexity of
each.  A separate register allocation pass after scheduling will work well if the target machine has enough
registers.  But if pipeline depth and issue width increase while the number of registers stays constant, this
becomes a more difficult condition to fulfill.  Our instruction scheduler integrates scheduling tightly with
register allocation.

  E. Various priority functions.  Most of these will be topological sorts of the DPG, but breadth first (good for
parallelism) versus depth first (good for register allocation) can have major performance implications. Our
priority functions are depth first.  We rely on the clustering heuristics in BUG and the natural breadth first
orientation of the list scheduling algorithm to give breadth to our scheduling passes.  In BUG, we walk the
DPG by component, performing a depth first traversal of each.  We visit components in the order they occur
on the trace, earliest first; our depth first traversal is guided by the latency-weighted depth of each
predecessor in the DPG.  For our instruction scheduler, we form a total ordering of the operations by
performing a similar walk to BUG; this ordering is used as a priority function.  All operations from an earlier
component have higher priority than operations from any later component.  This ordering gives higher
priority to the earlier basic blocks on the trace; in particular, every operation in the first unrolled loop body
will have higher priority than the operations in the second, and so forth.

  F. Static vs dynamic scheduling priority assignments.  Do the priorities of operations change during scheduling?
Our scheduling and register allocation pass has a limited amount of dynamic priority assignment.
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10.3.2   Integration of Scheduling with Register Allocation

The goal of integrating register allocation with scheduling is to be able to treat registers as a resource on par with
the other types of resources.  This is important when registers are a scarce resource.  On the Trace machines, long
pipelines and multiple operations per instruction make floating point registers a critical resource for generating
peak performance.

In addition, the Trace machines require a detailed scheduling of machine resources, which is quite expensive in
compile time.  This provides additional motivation for integrating scheduling and register allocation.  Performing
register allocation after scheduling requires a second scheduling pass for the spills and restores.  Allocating
registers before scheduling is not practical for a parallel machine, because it introduces too many constraints into
the code.

Cycle-driven scheduling is particularly well suited to integration with register allocation.  This organization allows
the registers to be treated very much like other resources.  At any given point during the scheduling process, each
of the registers is either occupied or available.  The process of checking for resources to schedule a particular
operation in a given cycle can include a check for a free register for its result.  If all the resources are available to
schedule the operation, the register, as well as the other resources, is reserved.

There is a major complication with trying to integrate this kind of simple first-come first-served register allocation
with operation-driven scheduling [23].  Because operation scheduling does not follow instruction order, it can
leave gaps during which a given register is available only for a certain number of cycles.  How can the scheduler
decide whether an operation can target a register in one of these gaps? In can do so only if the reader(s) of the
operation can be made data ready and resource ready in time to read the value before the end of the gap.  It is
difficult for an operation driven scheduler to make use of these gaps without backtracking.

10.3.3   Spilling

A register allocator must be able to deal with computations that do not fit in the available registers.  Our solution
ensures that the scheduler always makes progress.  Before scheduling an operation, we first check that all required
resources are available and then check if a register is free for the result.  If there is no free register, we heuristically
select a victim that is occupying a register.  We compare the priority of the operation we are trying to schedule with
the priority of the victim.  If the victim has lower priority, we schedule a spill of the victim.  Otherwise, we delay
the operation.  It is important that the priority assignments be a topological sort of the data precedence relationship.
If the victim has lower priority than the operation we are trying to schedule, the chosen operation does not depend
on the victim, and the victim can be spilled. Similarly, if the victim has higher priority, we can delay the operation
without risking deadlock.

Our mechanism for picking a victim grew in complexity over time.  Operations are assigned a priority before
scheduling.  When an operation is scheduled, its priority it adjusted to be the priority of its most urgent
unscheduled reader.  Our first victim choosing strategy chose the least urgent operation that occupied a register of
the right type for the unscheduled operation.  Later on, we refined the victim choosing strategy to take advantage
of our limited backtracking facility.  We made the observation that some values are easier to spill than others and,
having spilled them, some are easier to restore than others.  In particular, loads from memory can be reloaded from
their original locations without first requiring a spill if no possibly conflicting store has been scheduled in the
interim.  Results of immediate moves are also easy to recreate.  The result of this strategy is to shorten the live
range of memory references in the presence of register pressure.  The scheduler greedily fills unused memory
bandwidth with loads, and the register allocator removes those that were premature.  The effect is similar to what
might have been achieved by backward scheduling.

10.4  Limited Backtracking

The scheduler employs a limited form of backtracking that has proved quite useful.  Memory operations can be
replicated, or split, in the DPG, and scheduled multiple times.  Splitting occurs as scheduling proceeds; three
different situations can trigger it:

  A. Register allocation pressure can cause a scheduled load to be replicated in order to reclaim its target register
for a higher priority operation.  When this happens, the original load is removed from the schedule if none of
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its readers have yet been scheduled.  In some cases, the load is a common subexpression with scheduled
readers of more urgent priority and unscheduled readers of lower urgency.  Splitting in this case gives an
effect similar to live range splitting in coloring register allocators [11, 12, 18].  The difference is that our
splitting is responsive to the needs of the instruction scheduler.

  B. Memory-reference splitting is used to spread values to different register banks.  Depending on the balance of
memory references to floating point operations, it is sometimes better to load a value several times to
different register banks than to load the value once and distribute it with a series (or tree) of register transfers. 
After a floating point load is initially scheduled, the location requirements of its readers are analyzed.  If there
are a small number of memory references relative to floating point operations on the trace we will decide to
deliver the data to remote register banks by reloading rather than by direct register transfers.  This strategy
works well in concert with BUG clustering to limit the amount of intercluster register transfers required for
code with memory common subexpressions.

  C. Splitting can reclaim resources from lower priority operations on the behalf of higher priority ones.  One
particularly troublesome form of this is due to the mismatch of latencies between floating point and memory
operations as shown in Figure 10-6.  In this example, two double precision loads issued in cycle 0 
completely subscribe the write ports to register bank 1 in cycles 7 and 8; this prevents a floating multiply in
cycle 4 from targeting register bank 1.  Assume the multiply is of higher priority than the loads, but was not
data ready until cycle 4.  We will undo one of the lower priority loads to allow the higher priority multiply to
be scheduled.  The unscheduled load will be returned to the data ready queue.

0:  issue 2 loads to reg bank
1:
2:
3:
4:  cannot issue multiply to reg bank 1 
5:
6:
7: reg bank 1 write ports used by loads
8: reg bank 1 write ports used by loads

Figure 10-6: Lockout in scheduling

Unlike unlimited backtracking, our form of limited backtracking does not introduce a large algorithmic time
complexity into the scheduler.  If we unschedule an operation, we do not refill its issue slot and we guarantee that
an operation will never be unscheduled more than once.  In practice, very few operations are split.

10.5  Scheduling and Memory-Bank Disambiguation

As described in section 3, the 300 series has a two level interleaved memory hierarchy exposed to the compiler.

• Card conflicts result in a program error.  All memory references in the same beat must be to distinct memory
cards; if they are not, the result of the references are undefined.

• Bank conflicts result in a loss of performance.  On the 300 series, a memory reference busies a bank for 4
beats; a second reference to the same bank within a 4-beat window of the first will cause the entire machine to
stall until the end of the busy time.

Our strategy for managing bank and card conflicts is to divide the memory references in a trace into equivalence
classes based on our knowledge of their offsets relative to each other.  The equivalence classes are formed by
querying the disambiguator while scheduling.  Within an equivalence class, we understand the potential bank and
card conflicts; between two different equivalence classes, nothing is known.  For example, in a simple vector
kernel such as vector add (Figure 10-7), we know the relative offsets of the successive references to a and the
successive references to b, but (without interprocedural information) do not understand the relative offset of a
reference to a and a reference to b.
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subroutine vadd(n,a,b) 
double precision a(n),b(n)
do i = 1,n

a(i) = a(i) + b(i)
end do 
end

Figure 10-7: Vector Add Subroutine.

In scheduling code for a trace, we schedule a group of references from one equivalence class and then a group
from the next, alternating between classes to minimize bank stalls as in Figure 10-8 (b).  A schedule which did not
batch memory references by equivalence class will risk a bank stall on every reference as in Figure 10-8 (a). 

(a) Naive Order (b) Batched Order

t0 = a[i] t0 = a[i]
v0 = b[i] t1 = a[i+1]
r0 = t0 + v0 t2 = a[i+2]
t1 = a[i+1] :
v1 = b[i+1] v0 = b[i]
r1 = t1 + v1 v1 = b[i+1]
t2 = a[i+2] v2 = b[i+2]
v2 = b[i+2] :
r2 = t2 + v2 r0 = t0 + v0
: r1 = t1 + v1

r2 = t2 + v2

Figure 10-8: Memory-reference ordering.

Batching groups of references increases register pressure.  If we batch references in groups of 8, the schedule
requires 16 registers and risks a bank stall every 8 memory references.  The naive schedule order requires only 2
registers and risks a bank stall with every memory reference.  This tradeoff requires a heuristic limit on
memory-reference batching.

Memory-card conflicts result in program error; we must avoid them when scheduling code.  The scheduler keeps
track of the memory references scheduled in each cycle, consults the disambiguator for each new candidate
reference, and requeues the operation if a definite or possible conflict exists.

Memory-bank conflicts cause a program to slow down; we use our batching strategy to minimize the number of
conflicts.  The scheduler models the 4-beat bank-stall window by tracking memory references in the cycle being
scheduled and the previous 3 cycles.  When a memory reference is selected to be scheduled, we call the
disambiguator to compare it with the other memory references scheduled in the current bank-stall window.  If no
bank conflict is found, we schedule it.  If a definite bank conflict is found, we requeue the operation for the next
cycle.  If a possible bank conflict is found, we set it aside, and lower priority operations are considered for the
cycle.  When the other operations for this cycle have been considered, we revisit the list of possible bank conflicts.

We control the degree of batching by limiting the number of memory references that can be delayed in favor of a
lower priority reference.  When this limit is exceeded, we reconsider the memory references that we set aside, this
time without regard to possible memory-bank conflicts.

The main problem with our approach to managing bank conflicts is that BUG does not consider bank conflicts
when performing functional-unit assignment; we only consider bank conflicts when forming the final schedule. 
This means that BUG frequently assumes a scheduling order that is dramatically different than the one produced
by the list scheduler, which sometimes causes poor functional-unit assignments.  The scheduler’s particular
implementation of bank scheduling has other flaws.  We do not form the equivalence classes explicitly, but
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compute them as we schedule each cycle.  This means the equivalence classes do not guide our scheduling
decisions, but correct them at the last moment.  And in the case of vector loops, we use the bank-disambiguation
mechanism to reconstruct higher level information about the pattern of memory references which could be
communicated to the instruction scheduler more directly.

10.6  Pair mode

The 300 series has a  pair-mode feature, where 64-bit floating registers can be treated as 2 element single precision
vectors, and two results can be computed simultaneously.  Coupled with 64-bit loads from memory, 2 element
vector operations can be generated.  This doubles the peak single precision performance of the machine for
applications that can exploit this feature.

The instruction scheduler supports pair mode by making a special pass over the DPG.  It pairs two operations in
the DPG if they are pairable and are at the same DPG depth. Only single precision floating point operations and
memory references are candidates for pairing.  The order of search for pairable operations is:

  A. Pair memory references.  The disambiguator is called to ask if two references (X,Y) are pairable.  They are if
address(X) = 0 mod 8 and address(Y) − address(X) = 4.

  B. Pair operations whose readers are paired (e.g., the inputs to a paired store).

  C. Pair operations whose operands are paired (e.g., the two adds of two paired loads).

  D. Pair opportunistically in the DPG.

This works well if loops are aligned and post-conditioned such that the memory references in the loop iterations
could be paired.  However, the optimizations for doing this automatically were never completed.  The pair mode
feature was used to tune benchmarks and libraries in-house, where the appropriate loop-directives could be added
by hand.  This feature would have been more widely applicable if the system supported 64-bit memory references
on 0 mod 4 byte boundaries.

11  Machine model

The machine model is the compiler’s view of the architecture.  It is the sole source of all machine specific
information except for the operation set, which is also encoded in the IL-2.  The compiler’s model of the machine
is abstracted from the actual hardware.  However the absence of hardware resource management in the Trace
machines forces the compiler’s machine model to match many hardware aspects precisely.  The compiler models
all eight machines: three widths for each of three families (two for the 500 series).  All models are built into the
compiler; a single executable can generate code for all of the machines.

The components of the machine model are machine elements, resources, and connections.

Machine elements are either functional units, register banks, or constant generators.  A different functional unit is
created for each pattern of resource utilization or set of connections, so there is often more than one
machine-model functional unit for each hardware functional unit.  For example, on the 300 series, three chips (a
floating adder, a floating multiplier, and an integer ALU) execute the floating operation repertoire, but the
compiler models the complex as 18 distinct functional units, for there are 18 different resource patterns of use.  Of
course, these 18 functional units share a common resource so that only one of them can be scheduled in a given
beat.  A different register bank is created for each set of registers with a unique set of connections to other
functional units and register banks.  A different constant generator is created for each width of immediate field that
can be used.

Resources exist to express limitations on machine elements, such as busses, multiplier cores, and instruction
words.  The 300 series was modeled using four classes of resources: instruction word limits, which describe the
resources of the instruction encoding; functional-unit internal core limits, such as the floating point cores; bus and
write port limits, which enumerate the busses and write ports in the machine; and virtual resources introduced for
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the compiler’s convenience.  For example, the compiler introduced a branch resource, even though it could be
expressed using the other primitives.

Connections describe paths between machine elements.  Paths must start or end at a register bank or a constant
generator.  There are three types of connections: functional-unit sources and destinations, which describe the paths
connecting the functional units, constant generators, and register banks; copies, which describe paths from register
bank to register bank, and constant generator to register bank; and procedure linkage, which describe both the
paths to the hardware link registers and the virtual paths used to pass values at a procedure call.  Resources are
associated with connections.  Copy connections require a functional unit when scheduled; they are treated specially
because the instruction scheduler synthesizes them during scheduling.

12  Calling Sequence

12.1  Register partition

In most modern RISC runtime models, the register file is divided into three partitions: preserved, scratch, and
other [18, 57, 36].  Preserved registers are preserved across a call, scratch registers are possibly changed across a
call, and other are registers not available for general use (e.g., the stack pointer, the zero register, and the registers
reserved for the operating system).  Registers used to pass arguments are scratch.

Multiflow uses a pure caller-saves register partition; all register are scratch, except for the registers not available
for general use.  We originally implemented a pure callee-saves partition with all preserved registers.  We  were
unsatisfied with the performance with this partition, and we switched to caller-saves.  This change gave us a
performance improvement of over 40% for some procedure call intensive programs, but was typically less than 5%
for scientific applications. (We changed the argument passing from in-memory to in-registers at the same time; 
our in-register design is described below.  This change also contributed to the speedup.)  The improvement has two
explanations.

First, compiling for parallelism requires the use of many more registers than are used in sequential compilation,
and we do not want to pay a penalty on procedure entry and exit for their use.   These registers do not have to be
preserved because the lifetimes of the values in these registers typically do not  cross function calls. 

Second, the saving and restoring of scratch registers can be intermixed with other operations before and after a call,
and on a wide machine with a large amount of memory bandwidth the saves and restores can often be scheduled
for free.  Trace scheduling selects traces in priority order, so the saving and restoring of registers can be moved out
of the most frequently executed paths in the program.  In contrast, in a pure callee-saves partition, the saving of
some preserved registers must occur on procedure entry before any registers can be written.  Similarly, on exit the
restoring of some preserved registers must be delayed until the last operand registers are read. These operations can
not be intermixed with any others, and they often are on the critical path.

In retrospect, we wish we had kept a few integer preserved registers to hold induction variables and loop invariants
referenced in tight loops with function calls.  But we did not see a compelling need for preserved floating registers.

12.2  Argument passing

Multiflow uses all of the registers in the first cluster for passing arguments and returning values.  53 integer values
and 30 double precision floating values can be passed or returned in registers.  Larger argument lists or return
values overflow into memory.  Aggregates (e.g. C structures) can be passed and returned in registers.  The large
number of registers available for procedure linkage allowed us to write our N-at-a-time math library in C and have
a high performance linkage for 8- and 16-at-a-time functions.

FORTRAN always passes arguments in registers (except for the overflow block).  C supports three modes: passing
arguments in registers, in memory, or both.  C varargs routines require arguments passed in memory, as do some
older unportable C programs.  Other C routines prefer arguments passed in registers for performance.  To provide
ease-of-port, our default in C is to pass arguments in both memory and registers; the called procedure reads the
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arguments from memory (if required) or from registers.  Users can request arguments to be passed only in
registers, and the linker checks that all caller-callee pairs are compatible.

Passing arguments in both registers and memory has a surprisingly small effect on the performance of C programs.
The reason for this is that the access of arguments on procedure entry is often on the critical path, and the
arguments can be read directly from registers in all but varargs procedures.  The storing of arguments at a call site
is often not on the critical path, and it can be scheduled alongside other operations at little cost.  In addition, on the
300 series, the load pipeline is long (7 beats), and the store pipeline is short (effectively zero for the data item
being stored).

13  Disambiguator

Most work on compile-time memory-reference analysis has been done for vectorizing or parallelizing compilers
[5, 58, 73].  These compilers want to know if a loop (or loop nest) can vectorize or parallelize, and thus are
interested in knowing if there exists a conflict across any of the iterations of the loop.  In contrast, our trace
scheduling compiler is looking for fine grained parallelism along a trace and within the body of an unrolled loop. 
We want to know if the load in one iteration can move above the store in the previous iteration.

The disambiguator is queried in both Phase 2 and Phase 3.  In the optimizer, it performs location conflict analysis
for common subexpression elimination, loop invariant motion, and the allocation of array elements to register
variables in loops.  In the instruction scheduler, it is used to analyze both possible location conflicts and possible
bank conflicts.

13.1  An example

Consider the following loop, which we have unrolled to approximate at the source a transformation the compiler
will make.

1. subroutine test(a,t,j,k,n)
2. double precision a(100,*),t
3. do i = 1,n,4
4. a(i,j) = a(i,j) + t*a(i,k)
5. a(i+1,j) = a(i+1,j) + t*a(i+1,k)
6. a(i+2,j) = a(i+2,j) + t*a(i+2,k)
7. a(i+3,j) = a(i+3,j) + t*a(i+3,k)
8. end do
9. end

To generate good VLIW code for this loop, the loads in statements 5, 6, and 7 must move above the stores in
statements 4, 5, and 6.  In particular, the disambiguator must determine if the load from a(i+3,k) will ever refer to
the same location as the store to a(i,j) on a given iteration of the loop.  To answer this question, it constructs
derivations of the addresses referenced by the store and the load and asks if the derivations can ever be equal.  The
derivations are symbolic equations with terminals corresponding to induction variables or loop invariants.

array reference derivation

a(i,j) address(a) + 8 * ((i-1) + 100*(j-1))

a(i+3,k) address(a) + 8 * (((i+3)-1) + 100*(k-1))

We subtract the derivations, and see if the result can equal zero.  Simplifying, we get:

100*j - 100*k - 3 =? 0
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This is a Diophantine equation.  Using the GCD test [42], we can conclude there is no integer solution and the two
addresses are never equal.  This allows us to move the load above the store when scheduling code.

Notice that we were able to solve this equation because we knew the value of the leading dimension of A.  If lda is
unknown, we get

lda*j - lda*k - 3 =? 0

This equation has a solution, for example, when lda is 3 and j and k differ by 1.  But in this case, the program has
overstepped the bounds of the first dimension of the array.  We lost the dimension information by expanding the
index polynomial.  To avoid this problem, we construct derivations of each index expression, and perform an index
by index check when analyzing a pair of memory references for location conflict.  If these checks fail, we then
analyze the full addresses.1  In this case, the index derivations for the first dimension are i and i+3.  Their
difference is -3, which is clearly not equal to 0.

13.2  Disambiguator Queries

The disambiguator answers the following questions:

• Location_Conflict( ref1, ref2 ).  Do ref1 and ref2 possibly refer to overlapping memory locations?

• Bank_Conflict( ref1, ref2 ).  Do ref1 and ref2 possibly refer to the  same memory bank?

The answers it returns are: Yes, No, or Maybe.

The questions are answered in terms of the Phase 2 flow graph, before trace scheduling.  The disambiguator has
the following model:  given a sequential execution of the program represented by the Phase2 flow graph, it can
answer a question about any pair of dynamic instances of  ref1 and ref2 that are executed without crossing any loop
back edges.  To prevent the instruction scheduler from asking a question across a back edge, we do not permit a
trace to cross a back edge.

If the two references would not be executed on any dynamic path, the disambiguator cannot give a meaningful
answer.  Consider the following example where the two references have identical derivations, but clearly always
refer to different memory locations for the same value of j.

if (cond1) i = j + 1
if (.not.cond1) i = j - 1
if (cond1) a(i) = y
if (.not.cond1) x = a(i)+1.0

13.3  Derivations

A derivation is a symbolic equation of the address used in the memory reference; the terminals in the equation are
constants and definitions (or sets of definitions) of variables in the program.  Derivations are constructed by
walking recursively up the chain of reaching definitions [1] for the address.  For example, consider the following
code fragment.

1. subroutine test(a,n)
2. double precision a(n)
3. i = n+1
4. j = n/3
5. if (i.gt.100) then
6. m = n+1
7. else
8. m = n-1

1 This is the compiler’s default behavior.  For those FORTRAN programs that reference arrays out-of-dimension we provide the ability to dis-
able the index by index check.
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9. end if
10. p = m+1 
11. k = i + j + p 
12. x = a(k)

The load of a(k) in statement 12 refers to address(a)+8*(k-1).  To construct the derivation for a(k), we walk up
the tree of reaching definitions for k, stopping when we reach a leaf of the tree, or when we reach an operation that
we will not be able to analyze with our equation solver, or when we reach a variable with multiple reaching
definitions (as suggested by [23]).  In this example, we stop at statement 1 (the definition of n), since the
subroutine entry has no predecessors, and at statement 4 (the definition of j), since we cannot analyze division, and
at statement 10, since m has multiple reaching definitions.  We substitute the equation defining k into the equation
for the address of the load, and get the following derivation (where [x:y] represents the definition of y in statement
x).

 address(a) + 8 * (([1:n]+1 + [4:j] + {[6:m],[8:m]}+1) - 1)

Each derivation is normalized to a canonical form, so that arithmetic operations can be easily implemented.  The
derivation is expressed as a sum of products; terminals are reaching definitions, sets of reaching definitions, packet
seeds, and constants.

To prevent the derivation from wrapping around the back-edge of a loop, we insert derivation fences at the loop
head.  A derivation fence is a self-assignment that terminates the recursive walk of the chain of reaching
definitions.  We create a derivation fence for all variables that are both defined in the loop and live on entrance to
the loop head.  This includes all induction variables.  Once derivations are computed, the derivation fences are
removed from the flow graph.

13.4  Packet checks

When asked about a location conflict between ref1 and ref2, the disambiguator first performs a heuristic check
based on the referenced packets.  As defined in section 5,  a packet represents a group of variables with a
language-defined storage relationship.  If the packet check is unsuccessful, it uses its equation solver to compare
the derivations.  For bank conflicts, the relevant packet information is in the packet seed, which is incorporated
into the derivation, so we skip the packet check, and query the equation solver directly.

The packet checks test simple facts about the memory references that can rule out a location conflict.  For example,
direct references to distinct packets cannot conflict, nor can references to the different non-overlapping variables
within the same packet.  A pointer reference cannot refer to a variable whose address was never taken.  Two
template packets representing by-reference FORTRAN arguments cannot reference the same location if they are
both referenced on a dynamic path through the flow graph, and there is a store to one of them, due to restrictions
placed by the FORTRAN standard [6].

Actually, FORTRAN array arguments frequently do reference the same location in practice.  To handle this, we
provide a way to disable the ANSI restriction.  However, aliased array arguments often refer to exactly the same
portions of an array, and we added an equal-or-disjoint option to handle this case.  When true the compiler will
assume by-reference FORTRAN array arguments either refer to the same array, or are completely disjoint; it
assumes they do not to refer to different offsets within the same array.  The equal-or-disjoint option was sufficient
for all of the applications we encountered.

13.5  The equation solver

The equation solver is algorithmically simple.  For a location conflict, we want to know if

address(ref1) - address(ref2) =? 0

To answer the question, we subtract the two derivations, normalize the result D, find the GCD of the coefficients of
the non-constant terms in D, and check if the GCD divides the constant term of D.  If it does, there is a possible
conflict.
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For a bank conflict, we want to know if the two addresses are possibly equal modulo the number of banks B times
the number of bytes per word, which is 4.  We write this as:

address(ref1) - address(ref2) + i*4*B =? 0, for some integer i.

To answer this question, we compute D as before (ignoring the i*4*B term).  We then fold 4*B into the
computation of the GCD of the coefficients of the non-constant terms in D, effectively treating i*4*B as an
additional term in D whose coefficient is 4*B.  As before, if GCD divides the constant term of D there is a possible
conflict.

13.6  Size and alignment

If the size or alignment of the two references differ, they may have different addresses, but still conflict in memory. 
For example, consider the following FORTRAN equivalence statement:

double precision a(10)
integer m(10)
equivalence (a(2),m(2))

m(1) overlaps with the second half of a(1), though the difference of the two addresses is 4.

To answer this, we define a window of possible conflict, based on the size and alignment of the two references,
and check if the two references could possibly be located in the same window.  If they could, the disambiguator
returns maybe, indicating that the two references may conflict.  This applies to both location and bank conflict.

13.7  Assertions

13.7.1   An example

For some pairs of references, the disambiguator cannot answer questions based on the derivations alone.  The
following example sets up an array for a call to an FFT routine.  Performance of this code on the Trace 14/300 is
disappointing; in the inner trace after loop unrolling, the loads from iteration i+1 cannot move above the stores on
iteration i. This forces a sequential evaluation.

subroutine unpack(a,n) 
real a(*) 
...
 do i = 2, n_half

afront_r = a(2*i)
afront_i = a(2*i+1)
aback_r = a(2*(n-i))
aback_i = a(2*(n-i)+1)

r_even = afront_r + aback_r
i_even = afront_i + aback_i
r_odd = afront_r - aback_r
i_odd = afront_i - aback_i
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temp_1 = -twp1_r * i_even - twp1_i * r_odd
temp_2 = twp1_r * r_odd - twp1_i * i_even

a(2*i) = r_even + temp_1
a(2*i+1) = i_odd + temp_2
a(2*(n-i)) = r_even - temp_1
a(2*(n-i) +1) = temp_2 - i_odd

end do
return
end

The potential location conflicts are between the stores in loop-body i and the loads at the top of loop-body i+1. 
When comparing the first store in body i with all of the loads at the top of body i+1, the disambiguator gives the
following answers.  (Remember that i is incremented between the two bodies; we have substituted the incremented
value of i in the second column.)

Body i Body i + 1 Disambiguator

a(2*i) = = a(2*i+2) NO CONFLICT
a(2*i) = = a(2*i+3) NO CONFLICT
a(2*i) = = a(2*(n-i)-2) POSSIBLE CONFLICT
a(2*i) = = a(2*(n-i)-1) NO CONFLICT

In analyzing the memory reference in row 3, the disambiguator is trying to solve the following equation:

 (address(a) + 4*((2*i)-1)) - (address(a) + 4*((2*(n-i)-2)-1)) =? 0

Simplifying, we get:

 2*i - n + 1 =? 0

This has an integer solution when n = 2*i +1.  However, the programmer knows that i is always less than n/2.  Our
compiler provides an assertion facility that allows a programmer to tell the compiler facts about the relationships
between program variables.  In this example, we would assert that 2*i is less than or equal to n at the loop head.

subroutine unpack(a,n)
real a(*) 
...
do i = 2, n_half
c!mf! assert le(2*i,n)

...
end do
return
end

When the loop is unrolled, the assertion is duplicated with all of the other statements.  The path from the first store
in body i to the the third load in body i+1 now looks like the following:



TJS final – 57 – 10/30/92

a(2*i) = ; store from body i
...
i = i+1 ; increment i (end of body i)
...
assert(2*i <= n) ; assertion (beginning of body i+1) ...
= a(2*(n-i)) ; load from body i+1

Now, if we substitute for the increment of i, we have

a(2*i) = 
...  
assert (2*i+2 <= n) 
...  
= a(2*n-2*i-2)

The assertion can be rewritten as

 2*i - n + 1 < 0

This directly answers the question we had above.  We know that 2*i - n + 1 cannot equal zero, and there is no
location conflict.

If the compiler knew that n_half = n/2, it could generate the assertion itself.  We implemented this optimization
shortly before Multiflow closed, but we have no experience with it.

13.7.2   Definition

There are 8 types of assertions: EQ, NE, GT, GE, LT, LE, EQ_MOD, NE_MOD.  The first 6 assert a relationship
between two integer or pointer expressions.  The last two assert a modulus relationship between two expressions;
the base of the modulus must be a constant integer expression, restricted to powers of 2.  The modulus assertions
are useful in asserting about bank conflicts.

Derivations are constructed for assertions as well as memory references.  To normalize an assertion, we construct
the derivation of each side, subtract them, and factor out the GCD of the non-constant terms.  For example, the
assertion 4*i + 4*j < 1 is equivalent to 4*i + 4*j < 4 (since i and j are integers), which in turn is equivalent to i + j
< 1, which is what the disambiguator uses.  We discard useless assertions.  (An assertion is useless if it is trivially
false or trivially true.)  The GT, GE, LT, LE are all mapped into GT, by commuting the operands and adding one
if necessary.

Induction variable simplification introduces deriv_assign pseudo-ops to map the strength reduced induction
variables back to the original subscript expressions.  This allows derivations to refer to the original induction
variables, which in turn permits assertions to be applied after IVS is performed.  (Deriv_assigns also help loops
without assertions, in that they allow different induction variables to be compared when otherwise they would be
regarded as unrelated to each other.)

The meaning of an assertion is defined in terms of an execution of a program.  The asserted relationship is assumed
to be true at the point the assertion would be executed in the program.  This means an assertion can be used in
answering a question about two memory references if it dominates either reference.  (If it dominates one of the two
references, it must be executed if the reference is.) We do not actually generate code to execute the assertion.  To
allow for program portability, the assertions are represented as FORTRAN or C comments.

To keep track of which assertions apply to which memory references, we chain together the assertions that apply at
a given point in the program.  These chains form a tree that mirrors the dominator tree for the flow graph.

To use an applicable assertion, it must be an exact match: We subtract the derivation of the assertion from the
derivation of the equation we are trying to solve, and the result must be a constant.  The assertion is then used by
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testing the resulting constant.  This is much faster than a theorem prover, and we have not encountered real-life
examples where this restriction has been a problem.

13.8  Using the disambiguator during trace scheduling

The instruction scheduler queries the disambiguator in two contexts.  When building its data precedence graph
(DPG) for the trace, it asks the disambiguator about location conflicts between  <load,store>, <store,load>, and
<store,store> pairs on the trace.  To minimize the number of questions, all other edges in the DPG are constructed
first and the disambiguator is queried only about pairs of references that are not already constrained.

When scheduling code, the instruction scheduler asks about bank conflicts.  The instruction scheduler models the
4-beat bank-stall window, and before placing a memory reference in it, queries the disambiguator about possible
bank conflicts with other references in the window.  Because the window is greater than one instruction, the
instruction scheduler may need to perform bank conflict analysis across adjacent traces, i.e., when a split from one
trace rejoins to another.  To permit this, a record describing the bank-stall window is associated with any split from
or rejoin to the schedule for a trace.

13.8.1   Motion above splits

The instruction scheduler often moves code above splits.  We can location-disambiguate loads that have moved
above a split because of restrictions in the instruction scheduler.  The instruction scheduler will not move an
operation above a split if it has a side effect that affects the off-trace path.  A store can never move above a split; a
load L can move above a split only if the register variable written by L is dead on the off-trace path.  The
disambiguation for location conflicts involving the load L may be incorrect for executions which take the off-trace
path, but it is in precisely these situations that we do not care about the value returned by the load.

The bank-stall feature of the TRACE allows the instruction scheduler to use the disambiguator as a heuristic for
bank conflicts when a memory reference has been moved above a split.  The instruction scheduler assumes that the
on-trace path is the most likely one to be followed at run-time.  If it is, all bank-disambiguation questions are
well-defined and the answers will be correct.  If the program jumps off the trace, it may take some unexpected
bank stalls.  Experience has shown that the disambiguator’s answer is usually correct when the off-trace branch is
taken.

13.8.2   Tracking motion above splits

In his thesis [54], Nicolau proved that after one iteration of the trace scheduling algorithm (pick a trace, schedule,
and update the flow graph) on a flow graph P, each path in the new flow graph P’ corresponds to a path in P.  A
new path may contain some extra operations whose results are eventually discarded; an examination of Nicolau’s
proof shows that these operations are the result of motion above splits.  By induction, we can see that each trace
corresponds to a path in the Phase 2 flow graph, with some extra operations which have moved above a split.  By
tracking motion above splits, we can identify operations which may not be disambiguated correctly.

An operation can move above a split during instruction scheduling or when the trace scheduler creates
compensation code.  If it happens during instruction scheduling, the instruction scheduler is aware of the motion
when it queries the disambiguator; it also records this fact in the record it makes describing the bank-stall window
around a split or a join.  If an operation moves above a split while creating compensation code, the trace scheduler
flags this operation as having moved above a split; this information is preserved when the operation is passed to
the instruction scheduler or copied again.

14  Competitive Evaluation

In this section we compare the Trace 14/300 to two contemporary systems: the Convex C210 and the MIPS
M/1000.    First, we summarize the hardware characteristics of all three systems.  Second, we look at the relative
performance of the 14/300 and C210 on mini-supercomputer workloads.  Third, we compare all three systems on
the common ground of synthetic scientific benchmarks.  We would prefer to compare the systems on real
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applications, or at least on large standard benchmarks like the SPEC suite.  But the systems were sold into largely
non-overlapping markets with different important applications, and Convex has not published SPEC results for the
C210.  Finally, we present an analytical model of the 14/300 and M/1000; this model captures the ability of the
compilers and the systems to exploit operation level parallelism.

These comparisons lead us to conclude that a VLIW architecture with a trace scheduling compiler is superior to a
vector architecture for single stream scientific problems.  A VLIW can equal a vector machine on vector codes and
outperform it on floating point and integer scalar codes.  For systems applications, there is instruction level
parallelism to be exploited by a modest scale VLIW.  However, it was not sufficient to overcome the architectural
and organizational advantages of a RISC system tuned for these types of applications.

14.1  Competitive System Overview

The C210 and M/1000 are quite different processors, designed for different markets, and optimized for different
workloads.  Figure 14-1 summarizes their characteristics and compares them with the 14/300.

The Convex C210 is a vector processor [13].  It was the mini-supercomputer market leader in 1988-91 and a direct
competitor with the Trace 14/300.  The C210 is a hardware technology generation ahead of the 14/300, with 150%
faster gate speed and a 63% faster cycle time.  The C210 has higher peak megaflops but lower peak memory
bandwidth.  The C210 has a data cache; it is used for scalar references and bypassed by vector references.  Convex
has excellent vector compiler technology [51].  The C210’s scalar performance is difficult to characterize; Convex
has not released the standard scalar benchmarks (e.g., the integer SPECmarks). Within a year of its introduction,
the C210 could be extended into a multiprocessor system with up to four processors (the C240).  We are concerned
with single processor performance, and we will focus on the C210.

The MIPS M/1000 is based on the MIPS R2000/R2010 microprocessor chipset [40], the fastest circa-1987 RISC
processor.  MIPS also has excellent compiler technology [16].  The M/1000 was marketed as a network server.  It
was designed to maximize price/performance on general purpose workloads within the constraints of a 2-chip
CPU.  The 14/300 and the M/1000 have comparable cycle times. The Trace does not have a data cache; the Mips
does not have an interleaved memory system.  The load latency of the Trace is much longer than the latency of a
cache hit on the Mips.  The floating latencies are roughly comparable, but the Mips floating units are not fully
pipelined.  The peak megaflops and memory bandwidth of the M/1000 are much lower than the 14/300. 
Unfortunately, we do not have complete performance data on the M/1000, and in Section 14.3 we substitute
performance data for the MIPS M/120-5.  The M/120-5 was released shortly after the M/1000; it too is
R2000/R2010 based and has a similar cache subsystem, but it cycles at 60ns rather than 66.7ns.

Trace Convex MIPS
Processor 14/300 C210 M/1000

Year of Introduction 1987 1988 1987

Architecture VLIW RISC?+Vector RISC
Cycle Time 65ns 40ns 66.7ns

Peak Operation Issue Rates (per cycle)
  All ops 7 61 1
  Memory ops 2 1 1
  Floating ops 2 2 0.5-0.2

Bandwidth
  Memory (Mb/sec) 246 200 60
  Floating (Mflop/sec) 30 50 3-7.5

Latencies (cycles)

1 Measures the C210’s vector unit.
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  Load 7 2/121 2
  Flop 4 2 2-5
  Branch 2 2 2

Instruction Cache Size
  Bytes 512K 8K 64K
  Instructions 8K 4K 16K
  Operations 112K 64K1 16K

Data Cache (bytes) — 4K 64K
Vector Registers (bytes) — 8K —
Number of Banks 64 32 —
Bank-Stall Penalty (beats) 4 ? —

Figure 14-1: Summary of the Trace 14/300, Convex C210, and MIPS M/1000

14.2  Performance on Mini-Supercomputer Workloads

Mini-supercomputers are a class of computer systems designed in the 1980’s primarily to run the simulation
component of computer aided design applications (CAD).  These simulations embody the theories and techniques
of disciplines including physics, mechanical engineering, electrical engineering, chemistry, physics, mathematical
signal processing, and geology.  The codes that expressed these simulations have been under development for
some time (thirty years in some cases) and have grown to be quite large, complex, and functional computer
programs.   When Multiflow was founded in 1984, it was widely believed that the increase in use of CAD would
result in a tremendous increase in the demand for high speed computers specifically designed to run these
simulations.  By early 1987,  the market for such systems had attracted roughly 30 companies, each intent on
delivering compute servers designed to sell in the $200,000-$500,000 price range.  Market analysts divided the
machines produced by these companies into two classes: the mini-supers that could run the existing simulation
codes  (also known as dusty decks) with little or no modification, and the parallel processors that would require the
development of new simulation codes.

Convex was the mini-super market leader, followed by Alliant, SCS, FPS, and a host of others.  Multiflow was late
to the market, yet managed to break in and grow to become the third largest vendor.  While an exhaustive
exploration of the reasons for Multiflow’s relative success would have to consider many factors that aren’t relevant
to this paper (e.g., relative financial viability), we believe that the essential reason Multiflow managed to do so
well is technical, and thus quite relevant.  Multiflow was able, using its architecture and its compiler technology, to
exploit fine grained parallelism in the simulation codes in a way that the other vendors were not; this ability
fostered the company’s success, albeit a limited and temporary success.

Figure 14-2 contains a set of benchmark times for the 14/300 and C210 drawn from the mini-supercomputer
workload of mechanical engineering, computational chemistry, and signal processing applications.  Nastran and
Ansys are large commercial packages (approximately 500,000 source lines) for performing structural analysis
using the finite element method.  Though similar, they are worth considering separately because their respective
developers have quite different policies for allowing modifications by computer systems vendors: the vendor of
Ansys, Swanson Analysis, allows vendors virtually unlimited time for a port and will consider quite extensive
modifications and extensions to source (Convex replaced Ansys’s simultaneous equation solver with its own
10,000 line package); the vendor of Nastran, MacNeal-Schwendler, typically allows vendors almost no access to
the application source code, and thus accepts only limited modifications.  The relative performance of the 14/300 is
better on Nastran than Ansys, due to the dusty deck nature of Nastran.  

Gaussian86 is a computational chemistry package of roughly 200,000 lines that does ab initio molecular modeling. 
Amber is a molecular mechanics and dynamics program, Mopac is a semi-empirical electronic structure
calculation program, and Prolsq performs X-ray crystallography calculations.  The 14/300 outperforms the C210
on all of the chemistry codes.  
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The CFFT application is a signal processing kernel that performs single precision complex fast Fourier transforms
of varying sizes.  Both the 14/300 and C210 use handcoded subroutine libraries for this application, but the VLIW
architecture is a better match to the needs of the FFT algorithm and the 14/300 fully utilizes its memory and
floating point bandwidth [65].

Benchmark Test Trace Convex
Name Case 14/300 C210

Mechanical Engineering (seconds)

Nastran BCELL3 9.00 9.14
BCELL4 17.00 19.62
BCELL5 36.00 38.29
BCELL6 71.00  72.52
BCELL8 261.00 220.58
BCELL9 345.00 369.00
BCLL10 568.00 612.00
BCLL14 4687.00 3587.61

Ansys S-1 134.00 114.00
S-2 733.00 575.00
S-3 1849.00 1713.00
S-4 3760.00 3811.00
S-5 3927.00 3637.00
M-1 14.00 13.00
M-2 129.00 164.00
M-3 915.00 1020.00

Computational Chemistry (seconds)

Gaussian86 Malon2 1879.00 2193.00

Amber Case1 339.00 420.00
Case2 732.00 738.00
Case3 515.00 580.00

Mopac SCF 2.50  2.90
Prolsq Columbia 3846.00 4038.00

Signal processing (milliseconds)

CFFT 1024 elem 0.90 2.25
256 elem 0.21 0.55
64 elem 0.06  0.18

Figure 14-2: Performance on Mini-Super Workload: 14/300 vs. C210.
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Figure 14-3: Relative performance of 14/300 vs. C210.

Figure 14-3 graphically summarizes the performance data of Figure 14-2.  The benchmarks are listed along the
abscissa and a square is plotted at that point along the ordinate that represents the percentage by which the 14/300
is faster or slower than the C210.  The percentages are computed symmetrically.  Suppose, for example, that the
14/300 ran an application in 100 seconds: if the C210 ran it in 200 seconds the percentage would be +100%; if the
C210 ran it in 50 seconds the percentage would be −100%.

The 14/300 is a hardware technology generation behind the C210 and manages to eke out rough single processor
performance parity.   Performance parity was  no guarantee of market success.  Multiflow’s 500 series, due out in
late 1990, was expected to achieve a  4.5x performance step; Convex’s C380 series, built out of gallium arsenide
and delivered in late 1991, has achieved a 2.5x performance step on vector codes.  A 500 series processor would
have been about twice the performance of a C380 processor.

Many of the mini-supercomputer applications are well-suited for multiprocessing.  The lack of  multiprocessing
was a weakness of the 14/300, particularly in competitive situations with Convex.  The 500 series would have
introduced a dual processor capability, where a fully configured machine could run either as a dual processor
14-wide or a single processor 28-wide.

14.3  Performance on Synthetic Scientific Workloads

Linpack [22] and the Livermore FORTRAN kernels [50] are the standard scientific kernel benchmarks for both
mini-supercomputers and RISC-based systems.  These benchmarks are small and have received a large amount of
attention from each vendor, so they are indicative of peak system performance on tuned code.   Figure  14-4 shows
the circa-1988 results of these benchmarks for the Trace 14/300, the Convex C210, and the MIPS M/120-5.
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Benchmark Test Trace Convex MIPS
Name Case 14/300 C210 M/120-5

Livermore 1 25.14 29.00 2.95
FORTRAN 2 9.05 2.70 2.55
Kernels 3 24.04 20.60 2.97
  (LFK) 4 14.79 11.00 2.98

5 2.87 1.90 2.04
6 3.32 4.00 1.93
7 23.78 36.60 3.88
8 10.92 26.00 3.53
9 24.82 33.80 3.58
10 9.74 10.00 1.41
11 2.35 1.50 1.48
12 8.25 7.80 1.50
13 3.89 1.10 0.87
14 4.92 2.30 0.92
15 3.00 4.00 1.05
16 1.73 1.60 1.51
17 4.35 3.70 2.55
18 16.61 19.90 3.16
19 3.09 3.20 2.88
20 4.56 2.10 2.67
21 14.12 30.40 2.30
22 11.18 12.30 1.52
23 5.94 4.00 3.36
24 5.24 12.70 0.94

LFK means Average 9.90 11.75 2.27
Geometric 7.26 6.74 2.06
Harmonic 5.38 3.94 1.84

Linpack 100x100  17.00 17.00 2.10
1000x1000 42.00 44.00 3.60

Figure 14-4: Synthetic Scientific Workload: 14/300, C210, and M/120-5
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Figure 14-5: Comparison of LFK performance of 14/300 vs C210 (square) and 14/300 vs
M/120-5 (triangle).   Comparison ordered left to right by relative performance
of C210 vs M/120-5.

Figure 14-5 graphically compares these performance results.  The relative performance varies with the traditional
scalar/vector mix; to help clarify this trend, the LFK results have been sorted from left to right based on the vector
C210’s performance vs the scalar M/120-5.  The left side of the chart shows the relative performance of the 14/300
vs the C210 and M/120-5 on more scalar codes, the right hand side compares the performance on more
vectorizable codes.   If the twelve least vectorizable LFK’s are taken to measure scalar floating point performance
and the twelve most vectorizable are taken to measure vector floating point performance, the scalar and vector
floating point harmonic mean mega-flops are as follows:

14/300 C210 M/120-5
Scalar FP 3.71 2.31 1.78
Vector FP 9.80 13.33 1.90

Comparing the systems pairwise shows the 14/300 to be a  faster scalar floating point processor than either the
C210 or M/120-5, a much faster vector floating processor than the M/120-5, but not quite as good a vector
processor as the C210.

14/300 vs C210 14/300 vs M/120-5 C210 vs M/120-5
Scalar FP + 60% + 108% + 30%
Vector FP − 36% + 418% + 601%

If the differences in implementation technologies are factored out by normalizing all three machines linearly to the
same cycle time, one sees the following relative performance:
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14/300 vs C210 14/300 vs M/120-5 C210 vs M/120-5
Scalar FP + 161% + 126% − 15%
Vector FP + 22% + 460% + 400%

The normalized 14/300 is a substantially faster scalar floating point processor than either the C210 or M/120-5, a
much better vector processor than the M/120-5, and a slightly better vector processor than the C210.  While the
C210 far outperforms the M/120-5 on vector floating point, it is not as fast a scalar floating point engine.

14.4  Analyzing Parallelism on General Purpose Workloads

In the fall of 1989, two of the authors worked with Joel Emer of Digital Equipment Corporation and Richard
Lethin of Multiflow Computer to create a performance analysis of the Trace machines.  We developed a
performance model and used it to compare the Trace 14/300 with the Mips M/1000.  The analysis measured the
achieved parallelism of the Trace and Mips across a set of benchmarks.    We discovered that the Trace compiler
found significant parallelism in all code, averaging 2 to 11 scheduled operations in flight across runs of entire
programs.

14.4.1   The performance model

The performance model defines the execution time of a program as the product of cycles_executed and
cycle_time.  Cycles_executed is partitioned into scheduled_cycles, which is the compiler’s static schedule of
the CPU pipeline and dynamic_cycles, which are dynamic stalls introduced by the memory system.

 T = (scheduled_cycles + dynamic_cycles) * cycle_time

This equation can be rewritten as follows, where the dynamic cycles are expressed as an overhead factor, and the
scheduled cycles are expressed in terms of scheduled parallelism.

T = O/P * (1 + X) * C

T Execution time
O Number of operations
P Average scheduled parallelism:  Ops/scheduled_cycle 

Cycles include all "compile-time" interlocks
but ignore dynamic stalls due to memory system

X Execution overhead
I-cache stall + 
D-cache stall + 
Bank stall

C Cycle time

P, the scheduled parallelism, can be rewritten as a ratio of scheduled operations-in-flight to average scheduled
latency, using Little’s law [48].  By exposing the latency, we can measure the parallelism that the compiler is
actually finding, the average number of scheduled operations in flight.

P = D/L

D Scheduled operations in flight
L Average scheduled latency

Substituting for P, we get a final equation, which we use in the analysis below

 T = O * L/D * (1 + X) * C

This equation identifies the key components of single processor performance.



TJS final – 66 – 10/30/92

• C, the cycle time.

• O, the number of operations executed.

• L, the average latency of operations, ignoring the effects of the memory system.

• D, the instruction level parallelism.

• X, the overhead of the memory system.

It also highlights the fact that both the operation issue rate and the latency of operations contribute equally to
parallelism, and in particular, as the latency of operations increases, the compiler must find more parallelism for
the performance of the system to remain the same.  This is described as supersymmetry between superscalar and
superpipelining in [38].

 

14.4.2   Gathering the data

We used the following techniques to gather the data.

• Time.

   - T, the execution time, was measured by running the programs on stand-alone systems.

   - C, the cycle time, was known for each machine, and confirmed with simple timing loops.

• Scheduled cycles.  We used the MIPS pixie tool [35] to instrument the MIPS executable and measure the
scheduled cycles.  We wrote a similar tool for the Multiflow 14/300.  These tools can measure the total
number of scheduled cycles (ignoring memory effects), the total number of operations executed, and the
dynamic distribution of operations by opcode: 

   - O, the number of operations, is a direct output of pixie.

   - P is O/scheduled_cycles, and scheduled cycles is also measured by pixie.

   - L = Σ ( op_latency * op_count)/O, where op_count, the dynamic count of each type of operation, is a
direct output of pixie, and op_latency, the latency of each type of operation, is published in the
architecture manuals for the machines.

   - D = P*L

• Dynamic cycles.

   - X can be computed from T, C, and scheduled_cycles

 X = (T − C*scheduled_cycles) / C*scheduled_cycles

   - On the Multiflow Trace we could measure X’s component parts.  Hardware counters measured the stall
due to bank conflicts and instruction cache miss.

   - On the MIPS, we could not partition the dynamic cycles into data cache miss and instruction cache miss.

14.4.3   The programs

We measured four classes of programs, as shown in Figure 14-6.  These are most of the SPEC89 benchmarks [66],
with the addition of Linpack, which is a well-known vector benchmark [22], and grep, which is a version of the
Unix utility tuned for the Multiflow machine. For Linpack, we modeled in the source a blocking transformation
that the Multiflow optimizer was performing, but the MIPS optimizer was not, and compiled and ran the blocked
Linpack for both machines.
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Vector Floating
Linpack 100x100 Gaussian elimination
Tomcatv Fluid flow analysis

Scalar floating
Doduc Nuclear calculations
Fpppp Quantum chemistry
Spice2g6 Circuit simulator

Vector Integer
Grep Unix pattern search 
Eqntott CAD tool: convert boolean equations to truth table

Scalar Integer
Li Lisp interpreter
Gcc C compiler
Espresso CAD tool: PLA generator and optimizer

Figure 14-6: Benchmark programs

14.4.4     The results

A complete set of results are shown in Figure  14-7, 14-8, 14-9, and 14-10.  Operations O are reported in  millions,
cycles C are reported in nanoseconds, and time T is reported in seconds.

Benchmark O(M) D L 1+X C(ns) T(s)
espresso 1627.27 2.40 2.14 1.11 65.00 104.59
gcc 167.35 1.86 2.22 1.54 65.00 19.94
li 1269.18 1.98 2.50 1.05 65.00 109.76
eqntott 1226.03 5.49 2.40 1.40 65.00 48.73
grep 2.36 3.52 1.99 1.02 65.00 0.08
doduc 1368.57 3.36 2.40 1.72 65.00 109.00
fpppp 500.83 7.12 3.33 1.61 65.00 19.60
spice2g6 3469.02 2.88 2.67 1.33 65.00 277.00
linpack 61.96 10.86 3.55 1.26 65.00 1.66
tomcatv 1249.22 11.94 4.00 1.32 65.00 35.90

Figure 14-7: 14/300 Benchmark Performance

Benchmark O(M) D L 1+X C(ns) T(s)
espresso 1029.28 1.23 1.39 1.12 66.70 87.10
gcc 117.88 1.25 1.46 1.83 66.70 16.80
li 926.10 1.20 1.55 1.36 66.70 107.80
eqntott 1062.71 1.30 1.52 1.73 66.70 143.30
grep 2.16 1.47 1.58 1.94 66.70 0.30
doduc 1451.67 1.39 2.31 1.31 66.70 211.00
fpppp 538.68 1.55 2.06 2.41 66.70 114.70
spice2g6 3229.00 1.22 1.55 1.38 66.70 379.00
linpack 91.07 1.66 2.02 2.59 66.70 19.10
tomcatv 1673.07 1.78 2.06 2.68 66.70 345.00

Figure 14-8: M/1000 Benchmark Performance
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Benchmark O(M) D L 1+X C(ns) T(s)
espresso 0.63 1.96 0.65 1.01 1.03 0.83
gcc 0.70 1.49 0.66 1.19 1.03 0.84
li 0.73 1.64 0.62 1.29 1.03 0.98
eqntott 0.87 4.22 0.63 1.23 1.03 2.94
grep 0.92 2.40 0.79 1.90 1.03 3.60
doduc 1.06 2.42 0.97 0.76 1.03 1.94
fpppp 1.34 4.58 0.62 1.50 1.03 5.85
spice2g6 0.93 2.37 0.58 1.04 1.03 1.37
linpack 1.47 6.53 0.57 2.05 1.03 11.51
tomcatv 1.34 6.69 0.51 2.03 1.03 9.61

Figure 14-9: Speedup from M/1000 to 14/300

Benchmark1+X IC miss Bank Stall
espresso 1.11 0.08 0.03
gcc 1.54 0.50 0.04
li 1.05 0.05 0.00
eqntott 1.40 0.21 0.19
grep 1.02 0.02 0.00
doduc 1.72 0.71 0.01
fpppp 1.61 0.49 0.12
spice2g6 1.33 0.10 0.22
linpack 1.26 0.13 0.13
tomcatv 1.32 0.06 0.26

Figure 14-10: 14/300 decomposition of X

We aggregate the results by normalizing each program to 100 seconds of runtime on the MIPS M/1000; this
prevents a bias towards vectors programs which run much faster on the Multiflow machine.  Figure 14-11 presents
the aggregate summary.  The first two rows present the model data for the Mips and the Trace, and the bottom row
presents the ratio of their performance.    On average, the Trace machine was 1.8x faster than the Mips.  The
biggest contributor to the speed was D, the scheduled-ops-in-flight.  On average, the Trace maintained 3 scheduled
operations in flight.  The average operation latency L was less for the Mips, but the Multiflow machine had much
less dynamic overhead in the memory system (1+X).

O(M) D L 1+X C(ns) T(s)
M/1000 7175.45 1.36 1.69 1.69 66.67 1000.00
14/300 8283.86 2.99 2.48 1.26 65.00 562.19
Speedup 0.87 2.20 0.68 1.34 1.03 1.78

Figure 14-11: Normalized aggregate for all ten benchmarks

This comparison yields dramatically different results depending on the workload.

Workload Speedup

Scalar integer 0.88
Vector integer 3.30
Scalar floating point 2.12
Vector floating point 10.47

Figure 14-12: Speedup from M/1000 to 14/300 by workload



TJS final – 69 – 10/30/92

Figure 14-13 presents the results of the vector programs.  The Trace is 10.5x faster than the Mips.  The largest
factor is due to scheduled operations in flight (D).  The Trace averages 11.44 scheduled operations in flight across
these benchmarks.  This is a significant achievement, for  we are not just measuring the inner loops, but the entire
run of the program.  The other large factor in the performance differential is the memory system overhead, where
the 14/300 is twice the speed of the M/1000.  This advantage is largely offset by the shorter scheduled latencies on
the Mips, which are due to the use of a data cache.  The large number of extra operations performed by the Mips is
due to the lack of double precision load and store operations.

O(M) D L 1+X C(ns) T(s)
M/1000 961.75 1.72 2.04 2.63 66.70 200.00
14/300 686.49 11.44 3.79 1.29 65.00 19.10
Speedup 1.40 6.65 0.54 2.03 1.03 10.47

Figure 14-13: Aggregate for vector floating (linpack, tomcatv)

Figure 14-14 presents the results of the scalar floating programs.  Here the Trace outperforms the Mips by a factor
of 2.  All of the performance differential is due to the parallelism achieved by the compiler (D).  Figure 14-15
presents the results of the vector integer programs.  The Trace compiler also finds a significant amount of
scheduled parallelism here, which again accounts for the 14/300’s factor of 3 performance advantage.

O(M) D L 1+X C(ns) T(s)
M/1000 2009.62 1.36 1.93 1.58 66.70 300.00
14/300 1913.38 3.50 2.70 1.48 65.00 141.83
Speedup 1.05 2.57 0.71 1.07 1.03 2.12

Figure 14-14: Aggregate for scalar floating (doduc, fpppp, spice2g6)

O(M) D L 1+X C(ns) T(s)
M/1000 1461.60 1.38 1.55 1.83 66.70 200.00
14/300 1642.24 4.42 2.20 1.14 65.00 60.67
Speedup 0.89 3.20 0.70 1.60 1.03 3.30

Figure 14-15: Aggregate for vector integer programs (grep, eqntott)

Figure 14-16 presents the results of the scalar integer programs. The 14/300 is 14% slower than the M/1000.  This
is largely due to two reasons.  First, the Trace executes a large number of additional operations (O).  This is
partially explained by two architectural differences between the two machines: the Multiflow Trace does not have
8-bit or 16-bit memory reference operations or a branch-on-equal. These tasks require two operation sequences on
the Trace and can be done in one operation on the Mips.  Second, the data cache on the Mips significantly lowers
the average scheduled latency of operations (L).   This offsets the scheduled parallelism (D) found by the Trace
compiler.

O(M) D L 1+X C(ns) T(s)
M/1000 2742.48 1.22 1.46 1.38 66.70 300.00
14/300 4041.76 2.11 2.26 1.21 65.00 340.59
Speedup 0.68 1.72 0.64 1.14 1.03 0.88

Figure 14-16: Aggregate for scalar integer programs (espresso, gcc, li)

Figure 14-17 presents the scheduled operations in flight measured for all of these benchmarks.  For all of the
programs measured, the Trace compiler finds a significant amount of parallelism relative to a RISC machine.
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Figure 14-17: Operations In flight per cycle

15  Compiler Evaluation

15.1  Displaying the DPG

In the course of developing the compiler we used a directed acyclic graph drawer to display the DPG constructed
by the instruction scheduler.  These drawings graphically display the parallelism exposed by the compiler.  In the
DAGs, nodes are operations, solid lines are operand edges, and dotted lines are either constraining edges or
memory conflicts.  Inputs to the DPG are drawn at the top of the DAG, and outputs are at the bottom.

By looking at  various compilations of daxpy, we can illustrate the effectiveness of our loop unrolling strategy.  In
Figure 15-1, we show the inner trace of daxpy, with no loop unrolling.  There is very little parallelism within a
single loop body.  Figure 15-2 shows the inner trace of daxpy, postconditioned by 8.   The graph clearly illustrates
the parallelism of this vector kernel.  Figure 15-3 shows daxpy unrolled by 8 with the loop exits left in, as the
Trace compiler does by default.  It shows an equal amount of parallelism to the postconditioned daxpy, with the
exception of the constraint between stores and the preceding loop exit.   Figure 15-4 shows the same daxpy
unrolled by 8, but with only "traditional" optimizations applied; none of the Multiflow optimizations to eliminate
dependencies between unrolled loop bodies have been performed.  The amount of parallelism is heavily
constrained.  On vector kernels the Multiflow compiler effectively eliminates all of the dependencies between loop
bodies due to induction variables; the resulting unrolled loop has as much parallelism as if it had been
postconditioned.
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do i = 1,n
dy(i) = dy(i) + da*dx(i)
end do

Figure 15-1: Inner trace of DAXPY with no unrolling

Figure 15-2: Inner trace of DAXPY postconditioned by 8

Figure 15-3: Inner trace of DAXPY unrolled by 8

Trace(1)

0    IF_LREL 9    ADD 4    ADD 16   ADD

19   ADD 11   LD 7    LD 21   ADD

13   FMUL

15   ADD

17   ST

Trace(1)

0    IF_LREL 53   LD 17   LD 41   LD 47   LD 49   LD 19   LD 55   LD 43   LD 31   LD 37   LD 12   LD 25   LD 23   LD 35   LD 29   LD 9    LD

59   ADD63   ADD 50   FMUL20   FMUL56   FMUL44   FMUL60   ADD32   FMUL38   FMUL14   FMUL26   FMUL

51   ADD21   ADD57   ADD45   ADD 33   ADD39   ADD15   ADD27   ADD

52   ST 22   ST 58   ST 46   ST 34   ST 40   ST 16   ST 28   ST

62   ADD

Trace(1)

54   LD 36   LD 27   LD 45   LD47   LD 29   LD 38   LD 56   LD 72   LD 9    LD 20   LD 65   LD 63   LD 6    LD 70   LD18   LD15   REL0    REL 24   REL33   REL42   REL51   REL60   REL

48   FMUL 30   FMUL 39   FMUL 57   FMUL77   ADD73   FMUL11   FMUL 21   FMUL 66   FMUL 3    IF_LEQ

49   ADD 31   ADD 40   ADD 58   ADD 74   ADD 13   ADD 22   ADD 67   ADD

14   ST 17   IF_LEQ

26   IF_LEQ23   ST

35   IF_LEQ 32   ST

41   ST 44   IF_LEQ

53   IF_LEQ 50   ST

59   ST 62   IF_LEQ

68   ST 69   IF_LREL

75   ST 76   ADD

79   ADD
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Figure 15-4: Inner trace of DAXPY unrolled by 8 with only traditional optimization

Figure 15-5 shows the large amount of parallelism in a vectorizable kernel from the Livermore loops.  It is unrolled
16 times, which is the default for the 14/300.  Stores constrained by exit tests are the only limitation to parallelism. 
Figure 15-6 shows a surprising amount of parallelism from the inner trace of a Livermore kernel 16, unrolled 4
times by the compiler.  The control flow in the loop body appears to inhibit parallelism, but with feedback from
previous runs, the compiler can unroll the loop and select the dominant path.

do 1 l = 1,loop
do 1 k = 1,n

1 x(k)= q + y(k)*(r*zx(k+10) + t*zx(k+11))

Figure 15-5: LFK Kernel 1

Trace(1)

16   ADD21   ADD 0    IF_LREL9    ADD 4    ADD 19   ADD

37   ADD 11   LD7    LD 35   ADD 24   ADD27   ADD 32   ADD

53   ADD 13   FMUL 51   ADD 40   ADD43   ADD 48   ADD25   LD28   LD

69   ADD 15   ADD 67   ADD 56   ADD59   ADD 64   ADD 41   LD44   LD 30   FMUL

85   ADD 17   ST 23   IF_LREL 83   ADD 72   ADD75   ADD 80   ADD 57   LD60   LD 46   FMUL 31   ADD

101  ADD 99   ADD 88   ADD91   ADD 96   ADD 73   LD76   LD 62   FMUL 47   ADD 39   IF_LREL33   ST

117  ADD 115  ADD 104  ADD107  ADD 112  ADD 89   LD92   LD 78   FMUL 63   ADD 55   IF_LREL49   ST

133  ADD 131  ADD128  ADD120  ADD123  ADD105  LD108  LD 94   FMUL 79   ADD 71   IF_LREL65   ST

121  LD124  LD 110  FMUL 95   ADD 87   IF_LREL81   ST

126  FMUL 111  ADD 103  IF_LREL97   ST

127  ADD 119  IF_LREL113  ST

129  ST

Trace(1)
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ii= n/3
lb= ii+ii
k2= 0
k3= 0
c
do 485 l= 1,loop
m= 1

405 i1= m
410 j2= (n+n)*(m-1)+1

do 470 k= 1,n
k2= k2+1
j4= j2+k+k
j5= zone(j4)
if( j5-n ) 420,475,450

415 if( j5-n+ii ) 430,425,425
420 if( j5-n+lb ) 435,415,415
425 if( plan(j5)-r) 445,480,440
430 if( plan(j5)-s) 445,480,440
435 if( plan(j5)-t) 445,480,440
440 if( zone(j4-1)) 455,485,470
445 if( zone(j4-1)) 470,485,455
450 k3= k3+1

if( d(j5)-(d(j5-1)*(t-d(j5-2))**2+(s-d(j5-3))**2
     . +(r-d(j5-4))**2)) 445,480,440
455 m= m+1

if( m-zone(1) ) 465,465,460
460 m= 1
465 if( i1-m) 410,480,410
470 continue
475 continue
480 continue
485 continue

Figure 15-6: LFK Kernel 16

Trace(1)
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Figure 15-7 shows the parallelism in the inner trace of a recursive C program, with no inlining  It is not as large as
in kernels above, but there is a significant amount.

 /* The eight queens problem */  
Try(i, q, a, b, c, x)
int i, *q, a[], b[], c[], x[];
{

 int j;
 j = 0;
 *q = false;
 while ( (! *q) && (j != 8) ) {

j = j + 1;
*q = false;
if ( b[j] && a[i+j] && c[i-j+7] ) {

x[i] = j;
b[j] = false;
a[i+j] = false;
c[i-j+7] = false;
if ( i < 8 ) { 

Try(i+1,q,a,b,c,x);
if ( ! *q ) {

b[j] = true;
a[i+j] = true;
c[i-j+7] = true;
}

}
else *q = true;

}
}

}
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Figure 15-7: Eight Queens

15.2  Compile speed

The Multiflow compiler is slow.  To measure the speed of our compiler we developed a compile speed metric,
which is a 5855 line FORTRAN program composed of routines culled from various applications, combined into a
single file.  All comments and blank lines have been stripped from the file, so that every line is a source line.  The
results of compiling the metric are shown in Figure 15-8.  The chart presents the speed of compiling the metric
with the Multiflow FORTRAN compiler, running on a Multiflow 14/300, targeting the three widths of the 300
series, with the optimizer on and off.  It also presents the speed of the native Mips compiler, running on a
DECstation 3100.  The 3100 is based on the Mips R2000, and is slightly faster than an M/1000.  As we
demonstrated in section 14, a Mips M/1000 is a somewhat faster than a 14/300 for systems applications.

           Compile Speed (Lines Per Minute)
7/300 14/300 28/300  Mips

optimized 815 620    390  3220
checkout 2080 — — 8610

                   Performance Ratio
7/300 14/300 28/300 Mips

optimized 3.95 5.19 8.26 1.0
checkout 4.14 — — 1.0

Figure 15-8: Compile speed of FORTRAN metric

Trace(1)

39   REL15   ADD 0    LD 6    EQT 17   SUB53   ADD

3    IF_LEQ 20   ADD

9    IF_LEQ

10   ST

12   LD 33   LD31   LD

22   ADD

23   IF_LEQ

32   IF_LEQ

34   IF_LEQ

35   ST 40   IF_LEQ

36   ST41   ST45   ST49   ST 47   ST51   ST43   ST

37   ST

38   ST

55   LCALL_XA

65   LD

66   IF_LEQ

67   ST

68   ST

69   ST
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Many factors contribute to the slow speed of the compiler.  Foremost was a design decision in the implementation:
because of the ambitious nature of the project, we separated the major phases of the compiler with narrow
functional interfaces.  As a result, the source for a program built with the Multiflow compiler passed through six
distinct representations, with information often recomputed at each stage:

  A. the pcc trees in the front end, 

  B. the flow graph of IL-1 passed to the optimizer,

  C. the flow graph of IL-2 produced by the optimizer,

  D. the flow graph built by the trace scheduler,

  E. the DPG built by the code generator,

  F. the machine level representation built to emit code. 

The overhead of the interfaces and multiple representations shows up in the speed of our checkout compiler, which
is four times slower than the checkout compiler for the DECstation 3100.  The checkout compiler bypasses the
trace scheduler and substitutes its own code generator, so a program compiled with it has only 5, rather than 6,
representations.

The next factor in compile speed is the amount of unrolling the compiler performs and the width of the target
machine.  The ratio of the optimized DECstation 3100 compile speed to the 7/300 compilation is 4.15, roughly the
same as the ratio of the checkout compiler speeds.  Arguably, the 7/300 compile speed problem is entirely
explained by our interface overhead. However, the 14/300 is 30% slower than the 7/300, and the 28/300 is 50%
slower than the 14/300.  This is because we unroll much more heavily for the wider machines, and, in the
instruction scheduler, we have many more functional units and register banks to consider.

The third factor in compile speed is the algorithms used in the compiler.  Compared to most other compilers, our
optimizer performs more repeated analysis and optimizations and uses more expensive algorithms.  In particular,
our common subexpression and loop invariant implementation is much slower than the partial redundancy
algorithm used in the Mips compiler [14, 52], or the Reif and Tarjan algorithm [62, 63, 64].   In addition, our
instruction scheduler schedules much longer sections of code for a much wider machine than the Mips compiler,
and makes two scheduling passes.  Attention was paid to the complexity of the scheduling algorithms, but the
constant factors are large.  The trace scheduler is also not implemented as efficiently as it could be; its flow graph
nodes are individual operations rather than basic blocks.

The final factor in the compile speed is the coding style used in the compiler.  A high-level object-oriented style is
used throughout, and, particularly in the trace scheduler and code generator, a Lisp-like style is used.  This
high-level style enabled us to write a large program with a small number of engineers, but it contributed to the
memory usage and speed of the result.

16  Conclusions

In retrospect, we have formed the following opinions.

Fine grained parallelism is practical.  A fine-grained parallel processor can be effectively scheduled by a compiler
with relatively little input from the applications programmer.  Multiflow developed a good system for exploiting
fine grained parallelism in scientific applications.  It is not a particularly good one for systems applications, nor for
applications written in a style or language that makes compile-time memory dependency analysis difficult.  Most
of these limitations are due to the design goals of the system.  The machines were designed explicitly to provide
the largest possible potential for parallel speedup.  Many design tradeoffs arose in which cost, latency, and
performance on sequential code were traded away for issue and execute bandwidth, and the ability to achieve high
speeds on very parallel codes.  The compiler is able to find significant amounts of static parallelism in systems
applications, and we believe relatively simple implementations of current RISC instruction set architectures can be
designed to exploit this parallelism.
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On the Trace architecture and implementation.

• A fast cycle time is important.

• The 7-wide cluster is a nice balance of functional units that can be exploited by a compiler.  Many of the
authors are now pursuing similar designs, though at considerably faster cycle times.

• The value of the wider machines is questionable.  Poor connectivity makes them difficult to use effectively
except for very parallel code.  It appears these codes can be as effectively addressed with more traditional
vector and parallel computers.  However, a wide machine with better connectivity may be more widely
applicable.  Better connectivity, particularly in the register files, is important for the narrower machines as
well.

• Reducing the latency of operations always helps.  One of the primary incentives of the 300 series was to
reduce the latency of floating point operations.  A data cache would have been nice, but it was not possible to
implement one that would be coherent for four highly correlated memory access streams.

• It is wise to limit the amount of processor organizational detail defined in the architecture.  The compiler
should schedule for the underlying organization in order to maximize performance, but it seems clear that a
relatively narrow VLIW organization can be “papered-over” with a simple, stable, superscalar-style,
RISC-like architecture.

• Speculative execution is important.  To reach wider acceptance, a better solution to exceptions for speculative
operations will need to be discovered.  However, no Multiflow customer complained about the exception
behavior of his optimized program.

• The select operation is a good idea.  More predicated features, like the conditional store and conditional flop
operations of the 500 series [20], should be added to future machines.

• Compiler scheduling of bank conflicts works reasonably well.  Bank stalls will not be a major drag on
performance when the memory system is highly interleaved as long as the compiler batches references to
avoid risking a stall with every reference.

• The Multiflow card conflict scheme works poorly, in that it limits the usable memory bandwidth for vectors of
unknown stride.  This is fixed in the 500 series [39, 20]; in this design, card conflicts cause a one beat stall, not
a program error.

• The Multiflow Trace machines were designed using a compiler to model the machine.  This was very
successful, in that for scientific applications, which were the focus of our design, the compiler and machine
formed an effective system for delivering performance.

On the Trace compiler.

• Trace scheduling worked well.  The algorithm is simple, and excellently described in [23].  We are surprised it
has not made its way into other compilers.  We have not measured its effectiveness without speculative
execution.  An extension to consider multiple control flow paths, as suggested in [46, 47], is a good idea, but
the trace algorithm as described is an improvement over basic block schedulers.

• Feedback directed compilation is very profitable.

• The integrated register allocation and instruction scheduling strategy implements two important ideas.  The
first is the high priority given to allocating registers in the most frequently executed regions of code; the
recently described hierarchical coloring [10] captures this idea.  The second is that registers are a critical
resource that need to be scheduled like other machine resources.  A question is whether the three pass
schedule/allocate/schedule algorithms used in the IBM and HP compilers [55, 56] can extend to more parallel
machines.

• Machines with large amounts of instruction level parallelism can effectively utilize a calling-sequence register
partition with a large number of scratch registers.

• Greedy schedulers do not scale to high degrees of parallelism.
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• A weakness of our loop strategy is that the unrolling is done independently of the instruction scheduler.  This
independence, coupled with the complicated topology of the wide machines, makes the performance of the
compiler somewhat fragile: unroll one too many times, and performance for a loop may drop by 10%.  A
software pipeliner may be able to address this problem more directly.  However, it is not clear that software
pipelining is practical on a machine with as many constraints as the wide Trace machines, particularly with
multiple register banks, end-of-pipeline resource contention, and compiler-managed memory interleaving.

• The compiler management of the memory system works reasonably well, though we feel we could have done
a better job designing our implementation.  Our approach seems directly applicable to the cache memory
systems found on most high-performance RISC machines, regardless of whether they execute instructions in
parallel. Rather than batch references to avoid conflicts, on these machines we want to group references to the
same cache line to avoid possible thrashes.

• The disambiguator is very effective for FORTRAN programs, but less so for C programs with pointers.  It is
not a significant drag on compile speed, which we originally feared.  The assertion mechanism we designed is
very difficult to use; customers wanted an IVDEP, which we eventually provided.

• The Multiflow compiler does not do the high-level loop transformations (loop interchange, loop splitting, loop
fusion, outer loop unrolling, unroll-and-jam [73, 4, 9]) performed by the best vector compilers.  This is a major
weakness of the product.  It  is sometimes difficult to find enough parallelism to fill up the wide machines
without these restructurings.  The widespread use of the Kuck and Associates pre-processor demonstrates the
value of these transformations for all machines; the Trace would have benefited as well.

• For highly vectorizable codes, the Multiflow compiler can deliver the peak speed of the machine, but it often
requires more tuning than a vector compiler.  For non-vectorizable codes with potential parallelism, the
Multiflow compiler does much better than any other compiler (or handcoder) for instruction-level parallel
machines.
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17   Afterword

The Multiflow compiler was the work of many people.  John Ellis was never an employee of Multiflow, but his
Bulldog compiler got us off to a running start, and his coding style set a high standard for us to live up to.  The
engineering team was led by John Ruttenberg and Geoff Lowney, with Ruttenberg focusing on the instruction
scheduler and Lowney focusing on the trace scheduler and the early phases of the compiler.  The IL was designed
by Tom Karzes, Geoff Lowney, Mike Ward, and Stefan Freudenberger, and implemented by Karzes and
Freudenberger.  Joe Rodrigue wrote an IL interpreter that was used in the inital compiler debug.  The C front end
was implemented by Mike Ward.  The FORTRAN front end was implemented by Mike Ward, Cindy Collins, Jose
Oglesby, Marshall Presser, and Bob Nix.  The Fortran libraries were designed by Cindy Collins and implemented
by Collins and Ellen Colwell.  The n-at-time math library was designed and implemented by Woody Lichtenstein,
Barinder Malik, and Lee Campbell.  Chandra Joshi, Doug Gilmore, David Papworth and Chris Ryland wrote some
of the other math functions. Tom Karzes designed and implemented the optimizer; he was later assisted by Ray
Ellis.  Woody Lichtenstein contributed to the design of the reductions.  Stefan Freudenberger designed and
implemented CSE and the code expansions.  Geoff Lowney designed and implemented the trace scheduler;
Thomas Gross and Mike Ward added the copy suppression optimization. John Ruttenberg and Stefan
Freudenberger designed and implemented the instruction scheduler and machine model.  Woody Lichtenstein
worked on the extensions necessary to get good performance on the wider machines.  Cindy Collins contributed to
the implementation of pair mode and to the optimization of partial schedules.  Cindy Collins did the original
retarget of the compiler to the 300 series, and David Papworth did the original retarget to the 500 series; Stefan
Freudenberger polished both.  Tom Karzes invented the delayed binding algorithm, with contributions from John
Ruttenberg, who also did the actual implementation.  Tom Karzes designed and implemented the disambiguator. 
Jim Radigan wrote the checkout code generator.  He also enhanced the linker.  Ben Cutler wrote the assemblers
and the instruction set simulators for all eight Trace models.  He also wrote the trap code.  Chris Genly wrote the
debugger, and Ray Ellis and Brian Siritzky wrote the profiling tools.  Dan Kerns wrote a static resource checker. 
Pat Clancy implemented an icache optimizer in the linker.  Joe Rodrigue implemented the DAG drawer used to
draw the figures in section 15; it was enhanced by Stefan Freudenberger and Bob Nix.  Rich Lethin wrote mfpixie
and did the experiments reported in section 14.4.  Chani Pangali taught us the honest way to cheat at Linpack.  Bob
Nix and John O’Donnell led a company-wide "performance war" that gave us detailed feedback on the quality of
the compiler.  Cindy Collins designed our test system; Joe Rodrigue wrote many of the original tests.  Neda
Hajimohamadi managed testing and releases.

The Multiflow compiler technology has been purchased by Intel, Hewlett-Packard, Digital Equipment Corporation,
Fujitsu, Hughes, HAL Computer, and Silicon Graphics.

Acknowledgements.  Josh Fisher encouraged us to write this paper.  Rich Lethin, John Ellis, and Michael Adler
provided detailed reviews of early drafts.
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