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ABSTRACT

VLIW architectures are distinct from traditional RISC and CISC architectures
implemented in current mass-market microprocessors. It is important to
distinguish instruction-set architecture—the processor programming
model—from implementation—the physical chip and its characteristics.

VLIW microprocessors and superscalar implementations of traditional
instruction sets share some characteristics—multiple execution units and the
ability to execute multiple operations simultaneously. The techniques used
to achieve high performance, however, are very different because the
parallelism is explicit in VLIW instructions but must be discovered by
hardware at run time by superscalar processors.

VLIW implementations are simpler for very high performance. Just as RISC
architectures permit simpler, cheaper high-performance implementations
than do CISCs, VLIW architectures are simpler and cheaper than RISCs
because of further hardware simplifications. VLIW architectures, however,
require more compiler support.
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INTRODUCTION AND MOTIVATION

Currently, in the mid 1990s, IC fabrication technology is advanced enough to allow unprecedented
implementations of computer architectures on a single chip. Also, the current rate of process advancement
allows implementations to be improved at a rate that is satisfying for most of the markets these
implementations serve. In particular, the vendors of general-purpose microprocessors are competing for
sockets in desktop personal computers (including workstations) by pushing the envelopes of clock rate (raw
operating speed) and parallel execution.

The market for desktop microprocessors is proving to be extremely dynamic. In particular, the x86 market
has surprised many observers by attaining performance levels and price/performance levels that many
thought were out of reach. The reason for the pessimism about the x86 was its architecture (instruction
set). Indeed, with the advent of RISC architectures, the x86 is now recognized as a deficient instruction set.

Instruction set compatibility is at the heart of the desktop microprocessor market. Because the application
programs that end users purchase are delivered in binary (directly executable by the microprocessor) form,
the end users’ desire to protect their software investments creates tremendous instruction-set inertia.

There is a different market, though, that is much less affected by instruction-set inertia. This market is
typically called the embedded market, and it is characterized by products containing factory-installed
software that runs on a microprocessor whose instruction set is not readily evident to the end user.
Although the vendor of the product containing the embedded microprocessor has an investment in the
embedded software, just like end users with their applications, there is considerably more freedom to
migrate embedded software to a new microprocessor with a different instruction set. To overcome this
lower level of instruction-set inertia, all it takes is a sufficiently better set of implementation characteristics,
particularly absolute performance and/or price-performance.

This lower level of instruction-set inertia gives the vendors of embedded microprocessors the freedom and
initiative to seek out new instruction sets. The relative success of RISC microprocessors in the high-end of
the embedded market is an example of innovation by microprocessor vendors that produced a benefit large
enough to overcome the market’s inertia. To the vendors’ disappointment, the benefits of RISCs have not
been sufficient to overcome the instruction-set inertia of the mainstream desktop computer market.

Because of advances in IC fabrication technology and advances in high-level language compiler technology, it
now appears that microprocessor vendors are compelled by the potential benefits of another change in
microprocessor instruction sets. As before, the embedded market is likely to be first to accept this change.

The new direction in microprocessor architecture is toward VLIW (very long instruction word) instruction
sets. VLIW architectures are characterized by instructions that each specify several independent operations.
This is compared to RISC instructions that typically specify one operation and CISC instructions that typically
specify several dependent operations. VLIW instructions are necessarily longer than RISC or CISC
instructions, thus the name.
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WHY VLIW?

The key to higher performance in microprocessors for a broad range of applications is the ability to exploit
fine-grain, instruction-level parallelism. Some methods for exploiting fine-grain parallelism include:

+ pipelining

+ multiple processors

+ superscalar implementation

+ specifying multiple independent operations per instruction

Pipelining is now universally implemented in high-performance processors. Little more can be gained by
improving the implementation of a single pipeline.

Using multiple processors improves performance for only a restricted set of applications.

Superscalar implementations can improve performance for all types of applications. Superscalar (super:
beyond; scalar: one dimensional) means the ability to fetch, issue to execution units, and complete more
than one instruction at a time. Superscalar implementations are required when architectural compatibility
must be preserved, and they will be used for entrenched architectures with legacy software, such as the x86
architecture that dominates the desktop computer market.

Specifying multiple operations per instruction creates a very-long instruction word architecture or VLIW. A
VLIW implementation has capabilities very similar to those of a superscalar processor—issuing and
completing more than one operation at a time—with one important exception: the VLIW hardware is not
responsible for discovering opportunities to execute multiple operations concurrently. For the VLIW
implementation, the long instruction word already encodes the concurrent operations. This explicit
encoding leads to dramatically reduced hardware complexity compared to a high-degree superscalar
implementation of a RISC or CISC.

The big advantage of VLIW, then, is that a highly concurrent (parallel) implementation is much simpler and
cheaper to build than equivalently concurrent RISC or CISC chips. VLIW is a simpler way to build a
superscalar microprocessor.

ARCHITECTURE VS. IMPLEMENTATION

The word architecture in the context of computer science is often misused. Used accurately, architecture
refers to the instruction set and resources available to someone who writes programs. The architecture is
what is described in a definition document, often called a user’s manual. Thus, architecture contains
instruction formats, instruction semantics (operation definitions), registers, memory addressing modes,
characteristics of the address space (linear, segmented, special address regions), and anything else a
programmer would need to know.

An implementation is the hardware design that realizes the operations specified by the architecture.  The
implementation determines the characteristics of a microprocessor that are most often measured: price,
performance, power consumption, heat dissipation, numbers of pins, operating frequency, and so on.

Architecture and implementation are separate, but they do interact. As many researchers into computer
architecture discovered between the mid 1970s and 1980s, architecture can have a dramatic effect on the
quality of an implementation. In the mid 1980s, IC process technology could fabricate a microcoded
implementation of a CISC instruction set and a tiny cache or MMU. For about the same cost, this same
process technology could fabricate a pipelined implementation of a simple RISC instruction set (including
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large register file) with an MMU.  At the time, however, chip technology was not dense enough to build a
cost-effective, pipelined implementation of a CISC instruction set. As a result, pipelined RISC chips enjoyed
a dramatic performance advantage and made a compelling case for RISC architectures.

The important point is that a range of implementations of any architecture can be built, but architecture
influences the quality and cost-effectiveness of those implementations. The influence is exerted largely in the
trade-offs that must be made to accommodate complexity associated with the instruction set. The more
chip area spent on logic to decode instructions and implement irregularities, the less that can be devoted to
performance-enhancing features.

ARCHITECTURE COMPARISON: CISC, RISC, AND VLIW

From the larger perspective, RISC, CISC, and VLIW architectures have more similarities than differences.
The differences that exist, however, have profound effects on the implementations of these architectures.

Obviously these architectures all use the traditional state-machine model of computation: Each instruction
effects an incremental change in the state (memory, registers) of the computer, and the hardware fetches
and executes instructions sequentially until a branch instruction causes the flow of control to change.

TABLE 1

The differences between RISC, CISC, and VLIW are in the formats and semantics of the instructions. Table 1
compares architecture characteristics.

CISC instructions vary in size, often specify a sequence of operations, and can require serial (slow) decoding
algorithms. CISCs tend to have few registers, and the registers may be special-purpose, which restricts the
ways in which they can be used. Memory references are typically combined with other operations (such as
add memory to register). CISC instruction sets are designed to take advantage of microcode.

RISC instructions specify simple operations, are fixed in size, and are easy (quick) to decode. RISC
architectures have a relatively large number of general-purpose registers. Instructions can reference main

ARCHITECTURE
CHARACTERISTIC

CISC RISC VLIW

INSTRUCTION SIZE Varies One size, usually 32 bits One size

INSTRUCTION FO RMAT Field placement varies Regular, consistent
placement of fields

Regular, consistent placement of
fields

INSTRUCTION
SEMANTICS

Varies from simple to
complex; possibly many
dependent operations
per instruction

Almost always one simple
operation

Many simple, independent
operations

REGISTERS Few, sometimes special Many, general-purpose Many, general-purpose

MEMORY REFE RENCES Bundled with operations
in many different types of
instructions

Not bundled with
operations, i.e., load/store
architecture

Not bundled with operations,
i.e., load/store architecture

HARDWARE DESIGN
FOCUS

Exploit microcoded
implementations

Exploit implementations
with one pipeline and &
no microcode

Exploit implementations with
multiple pipelines, no microcode &
no complex dispatch logic

PICTURE OF FIVE
TYPICAL INSTRU CTIONS

    = 1 BYTE
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memory only through simple load-register-from-memory and store-register-to-memory operations. RISC
instruction sets do not need microcode and are designed to simplify pipelining.

VLIW instructions are like RISC instructions except that they are longer to allow them to specify multiple,
independent simple operations. A VLIW instruction can be thought of as several RISC instructions joined
together. VLIW architectures tend to be RISC-like in most attributes.

Figure 1 shows a C-language code fragment containing small function definition. This function adds a local
variable to a parameter passed from the caller of the function.

The implementation of this function in CISC, RISC, and VLIW code is also shown. This example is
extremely unfair to the RISC and VLIW machines, but it illustrates the differences between the
architectures.

The CISC code consists of one instruction because the CISC architecture has an add instruction that can
encode a memory address for the destination. So, the CISC instruction adds the local variable in register r2
to the memory-based parameter. The encoding of this CISC instruction might take four bytes on some
hypothetical machine.

The RISC code is artificially inefficient. Normally, a good compiler would pass
the parameter in a register, which would make the RISC code consist of only a
single register-to-register add instruction.  For the sake of illustration, however,
the code will consist of three instructions as shown. These three instructions
load the parameter to a register, add it to the local variable already in a register,
and then store the result back to memory. Each RISC instruction requires four
bytes.

The VLIW code is similarly hampered by poor register allocation. The example
VLIW architecture shown has the ability to simultaneously issue three
operations. The first slot (group of four bytes) is for branch instructions, the
middle slot is for ALU instructions, and the last slot is for the load/store unit.
Since the three RISC operations needed to implement the code fragment are
dependent, it is not possible to pack the load and add in the same VLIW
instruction. Thus, three separate VLIW instructions are necessary.

With the code fragment as shown, the VLIW instruction is depressingly
inefficient from the point of view of code destiny. In a real program situation,
the compiler for the VLIW would use several program optimization techniques
to fill all three slots in all three instructions. It is instructive to contemplate the
performance each machine might achieve for this code. We need to assume
that each machine has an efficient, pipelined implementation.

FIGURE 1
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A CISC machine such as the 486 or Pentium would be able to execute the code fragment in three cycles.

A RISC machine would be able to execute the fragment in three cycles as well, but the cycles would likely
be faster than on the CISC.

The VLIW machine, assuming three fully-packed instructions, would effectively execute the code for this
fragment in one cycle. To see this, observe that the fragment requires three out of nine slots, for one-third
use of resources. One-third of three cycles is one cycle.

To be even more accurate, we can assume good register allocation as shown
in Figure 2. This example may actually be giving the CISC machine a slight
unfair advantage since it will not be possible to allocate parameters to registers
on the CISC as often as is possible for the RISC and VLIW.

The CISC and RISC machines with good register allocation would take one
cycle for one register-to-register instruction, but notice that the RISC code size
is now much more in line with that of the CISC. Again assuming fully packed
instructions, the VLIW execution time would also gain a factor of three benefit
from good register allocation, yielding an effective execution time for the
fragment of one-third of a cycle!

Note that these comparisons have been between scalar (one-instruction per
cycle maximum) RISC and CISC implementations and a relatively narrow
VLIW. While it would be more realistic to compare superscalar RISCs and
CISCs against a wider VLIW, such a comparison is more complicated.  Suffice
it to say that the conclusions would be roughly the same.

IMPLEMENTATION COMPARISON: SUPERSCALAR CISC, SUPERSCALAR RISC, VLIW

The differences between CISC, RISC, and VLIW architectures manifest themselves in their respective
implementations. Comparing high-performance implementations of each is the most telling.

High-performance RISC and CISC designs are called superscalar implementations. Superscalar in this
context simply means “beyond scalar” where scalar means one operations at a time. Thus, superscalar
means more than one operation at a time.

Most CISC instruction sets were designed with the idea that an implementation will fetch one instruction,
execute its operations fully, then move on to the next instruction. The assumed execution model was thus
serial in nature.

RISC architects were aware of the advantages and peculiarities of pipelined processor implementations, and
so designed RISC instruction sets with a pipelined execution model in mind. In contrast to the assumed
CISC execution model, the idea for the RISC execution model is that an implementation will fetch one
instruction, issue it into the pipeline, and then move on to the next instruction before the previous one has
completed its trip through the pipeline.

FIGURE 2
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The assumed RISC execution model—a pipeline—overlaps phases of execution for several instructions
simultaneously, but like the CISC execution model, it is scalar; that is, at most one instruction is issued at
once.

For either CISC or RISC to reach higher levels of performance than provided by a single pipeline, a
superscalar implementation must be constructed. The nature of a superscalar implementation is that it
fetches, issues, and completes more than one CISC or RISC instruction per cycle.

Some more recent RISC architectures have been designed with superscalar implementations in mind. The
most notable examples are the DEC Alpha and IBMPOWER (from which PowerPC is derived).
Nonetheless, superscalar RISC and superscalar CISC implementations share fundamental complexities: the
need for the hardware to discover
and exploit instruction-level
parallelism.

Figure 3 shows a crude high-level
block diagram of a superscalar
RISC or CISC processor
implementation. The
implementation consists of a
collection of execution units
(integer ALUs, floating-point ALUs,
load/store units, branch units, etc.)
that are fed operations from an
instruction dispatcher and
operands from a register file.

The execution units have
reservation stations to buffer
waiting operations that have been
issued but are not yet executed.
The operations may be waiting on
operands that are not yet available.

The instruction dispatcher
examines a window of instructions
contained in a buffer. The
dispatcher looks at the instructions
in the window and decides which ones can be dispatched to execution units.  It tries to dispatch as many
instructions at once as is possible, i.e. it attempts to discover maximal amounts of instruction-level
parallelism. Higher degrees of superscalar execution, i.e., more execution units, require wider windows and a
more sophisticated dispatcher.

It is conceptually simple—though expensive—to build an implementation with lots of execution units and
an aggressive dispatcher, but it is not currently profitable to do so. The reason has more to do with
software than hardware.

The compilers for RISC and CISC processors produce code with certain goals in mind. These goals are
typically to minimize code size and run time. For scalar and very simple superscalar processor
implementation, these goals are mostly compatible.

For high-performance superscalar implementations, on the other hand, the goal of minimizing code size
limits the performance that the superscalar implementation can achieve. Performance is limited because
minimizing code size results in frequent conditional branches, about every six instructions.  Conceptually, the

FIGURE 3
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processor must wait until the branch is resolved before it can begin to look for parallelism at the target of
the branch.

To avoid waiting for conditional branches to be resolved, high-performance superscalar implementations
implement branch prediction. With branch prediction, the processor makes an early guess about the
outcome of the branch and begins looking for parallelism along the predicted path. The act of dispatching
and executing instructions from a predicted—but unconfirmed—path is called speculative execution.

Unfortunately, branch prediction in not 100% accurate. Thus, with speculative execution, it is necessary to
be able to undo the effects of speculatively executed instructions in the case of a mispredicted branch. Some
implementations, such as Intel’s superscalar Pentium, simply prevent instructions along the predicted path
from progressing far enough to modify any visible processor state, but to gain the most from speculative
execution, it is necessary to allow instructions along the predicted path to execute fully.

To be able to undo the effects of full, speculative execution, a hardware structure called a reorder buffer
can be employed. This structure is an adjunct to the register file that keeps track of all the results produced
by instructions that have recently been executed or that have been dispatched to execution units but have
not yet completed. The reorder buffer provides a place for results of speculatively executed instruction (and
it solves other problems as well). When a conditional branch is, in fact, resolved, the results of the
speculatively executed instructions can be either dropped from the reorder buffer (branch mispredicted) or
written from the buffer to the register file (branch predicted correctly).

The major differences between high-performance superscalar implementations of RISCs and CISCs are a
matter of degree. The instruction-decode and -dispatch logic in an aggressive superscalar RISC is simpler
than that of an aggressive superscalar CISC, but the logic is required in both cases. The same is true for the
reorder buffer.

SOFTWARE INSTEAD OF HARDWARE: IMPLEMENTATION ADVANTAGES OF VLIW

A VLIW implementation achieves the same effect as a superscalar RISC or CISC implementation, but the
VLIW design does so without the two most complex parts of a high-performance superscalar design.

Because VLIW instructions explicitly specify several independent operations—that is, they explicitly, specify
parallelism—it is not necessary to have decoding and dispatching hardware that tries to reconstruct
parallelism from a serial instruction stream. Instead of having hardware attempt to discover parallelism,
VLIW processors rely on the compiler that generates the VLIW code to explicitly specify parallelism. Relying
on the compiler has advantages.

First, the compiler has the ability to look at much larger windows of instructions than the hardware. For a
superscalar processor, a larger hardware window implies a larger amount of logic and therefore chip area.
At some point, there simply is not enough of either, and window size is constrained. Worse, even before a
simple limit on the amount of hardware is reached, complexity may adversely affect the speed of the logic,
thus the window size is constrained to avoid reducing the clock speed of the chip. Software windows can
be arbitrarily large. Thus, looking for parallelism in a software window is likely to yield better results.

Second, the compiler has knowledge of the source code of the program. Source code typically contains
important information about program behavior that can be used to help express maximum parallelism at
the instruction-set level. A powerful technique called trace-driven compilation can be employed to
dramatically improve the quality of code output by the compiler. Trace-drive compilation first produces a
suboptimal, but correct, VLIW program. The program has embedded routines that take note of program
behavior. The recorded program behavior—which branches are taken, how often, etc.—is then used by the
compiler during a second compilation to produce code that takes advantage of accurate knowledge of
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program behavior. Thus, with trace-driven compilation, the compiler has access to some of the dynamic
information that would be apparent to the hardware dispatch logic in a superscalar processor.

Third, with sufficient registers, it is possible to mimic the functions of the superscalar implementation’s
reorder buffer. The purpose of the reorder buffer is to allow a superscalar processor to speculatively
execute instructions and then be able to quickly discard the speculative results if necessary. With sufficient
registers, a VLIW machine can place the results of speculatively executed instructions in temporary registers.
The compiler knows how many instructions will be speculatively executed, so it simply uses the temporary
registers along the speculated (predicted) path and ignores the values in those registers along the path that
will be taken if the branch turn
out to have been mispredicted.

Figure 4 shows a generic VLIW
implementation, without the
complex reorder buffer and
decoding and dispatching logic.

THE ADVANTAGE OF
COMPILER COMPLEXITY
OVER HARDWARE
COMPLEXITY

While a VLIW architecture
reduces hardware complexity
over a superscalar
implementation, a much more
complex compiler is required.
Extracting maximum performance
from a superscalar RISC or CISC
implementation does require
sophisticated compiler techniques, but the level of sophistication in a VLIW compiler is significantly higher.

VLIW simply moves complexity from hardware into software. Luckily, this trade-off has a significant side
benefit: the complexity is paid for only once, when the compiler is written instead of every time a chip is
fabricated. Among the possible benefits is a smaller chip, which leads to increased profits for the
microprocessor vendor and/or cheaper prices for the customers that use the microprocessors. Complexity
is usually easier to deal with in a software design than in a hardware design. Thus, the chip may cost less to
design, be quicker to design, and may require less debugging, all of which are factors that can make the
design cheaper. Also, improvements to the compiler can be made after chips have been fabricated;
improvements to superscalar dispatch hardware require changes to the microprocessor, which naturally
incurs all the expenses of turning a chip design.

PRACTICAL VLIW ARCHITECTURES AND IMPLEMENTATIONS

The simplest VLIW instruction format encodes an operation for every execution unit in the machine. This
makes sense under the assumption that every instruction will always have something useful for every
execution unit to do. Unfortunately, despite the best efforts of the best compiler algorithms, it is typically
not possible to pack every instruction with work for all execution units. Also, in a VLIW machine that has
both integer and floating-point execution units, the best compiler would not be able to keep the floating-
point units busy during the execution of an integer-only application.

FIGURE 4
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The problem with instructions that do not make full use of all execution units is that they waste precious
processor resources: instruction memory space, instruction cache space, and bus bandwidth.

There are at least two solutions to reducing the waste of resources due to sparse instructions. First,
instructions can be compressed with a more highly-encoded representation. Any number of techniques,
such as Huffman encoding to allocate the fewest bits to the most frequently used operations, can be used.

Second, it is possible to define an instruction word that encodes fewer operations than the number of
available execution units. Imagine a VLIW machine with ten execution units but an instruction word that can
describe only five operations. In this scheme, a unit number is encoded along with the operation; the unit
number specifies to which execution unit the operation should be sent. The benefit is better utilization of
resources. A potential problem is that the shorter instruction prohibits the machine from issuing the
maximum possible number of operations at any one time. To prevent this problem from limiting
performance, the size of the instruction word can be tuned based on analysis of simulations of program
behavior.

Of course, it is completely reasonable to combine these two techniques: use compression on shorter-than-
maximum-length instructions.

HISTORICAL PERSPECTIVE

VLIW is not a new computer architecture. Horizontal microcode, a processor implementation technique in
use for decades, defines a specialized, low-level VLIW architecture. This low-level architecture runs a
microprogram that interprets (emulates) a higher-level (user-visible) instruction set. The VLIW nature of the
horizontal microinstructions is used to attain a high-performance interpretation of the high-level instruction
set by executing several low-level steps concurrently. Each horizontal microcode instruction encodes many
irregular, specialized operations that are directed at primitive logic blocks inside a processor. From the
outside, the horizontally microcoded processor appears to be directly running the emulated instruction set.

In the 1980s, a few small companies attempted to commercialize VLIW architectures in the general-purpose
market. Unfortunately, they were ultimately unsuccessful. Multiflow is the most well known.  Multiflow’s
founders were academicians who did pioneering, fundamental research into VLIW compilation techniques.
Multiflow’s computers worked, but the company was probably about a decade ahead of its time. The
Multiflow machines, built from discrete parts, could not keep pace with the rapid advances in single-chip
microprocessors. Using today’s technology, they would have a better chance at being competitive.

In the early 1990s, Intel introduced the i860 RISC microprocessor. This simple chip had two modes of
operation: a scalar mode and a VLIW mode. In the VLIW mode, the processor always fetched two
instructions and assumed that one was an integer instruction and the other floating-point. A single program
could switch (somewhat painfully) between the scalar and VLIW modes, thus implementing a crude form of
code compression. Ultimately, the i860 failed in the market. The chip was positioned to compete with other
general-purpose microprocessors for desktop computers, but it had compilers of insufficient quality to
satisfy the needs of this market.
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